Schlagwort-Archive: Power-to-Gas

Verteilnetzstudie des Landes Hessen – Das Wesentliche:

Verteilnetzstudie des Landes Hessen – Das Wesentliche:

Notizen / Stichpunkte zur Verteilnetzstudie Hessen

Die Verteilnetzstudie des Landes Hessen ist ein zwar sehr umfangreiches, dafür aber initiales Dokument, das bisher unbearbeiteter Felder der Energiepolitik weit öffnet.

Sie ist an manchen Stellen zwar viel zu detailliert, als Einstiegsdokument aber gerade deshalb interessant, weil sie bisher vollkommen unbeachtete Aspekte in den Fokus nimmt.

Das Land Hessen nimmt damit energiepolitisch den progressivsten Platz im Konzert – oder auch der Kakophonie – der deutschen Bundesländer ein.

Die Beauftragung in 2015 wäre allerdings längst zeitkritisch – wenn sich in der Energiepolitik seither etwas Entscheidendes oder überhaupt irgendetwas nach vorne bewegt hätte

Lobenswert anspruchsvoll sind indessen die Ambitionen: Die energiepolitischen Ziele des Landes Hessen adressieren dabei sowohl die nachhaltige Veränderung der Energieerzeugungslandschaft, welche bis 2050 eine vollständige Deckung des Endenergieverbrauchs für Strom und Wärme aus Erneuerbaren Energien erzielen soll, als auch Energieeffizienzbestrebungen und den beschleunigten Wandel des Energieverbrauchs hin zu möglichst emissionsfreien, effizienten elektrischen Verbrauchern. (S. 1)

Woraus – zum Glück – der Schluss gezogen wird, dass die Anforderungen an die Verteilnetze sich zukünftig verändern (S. 1), denn sie werden … zusätzlich zu ihrer bisherigen Versorgungsaufgabe den Hauptteil der neuen Einspeisung aufnehmen und fast alle neuen Stromanwendungen direkt versorgen. Was denknotwendig zu einem … potenziell umfangreichen Ausbau der regionalen Verteilnetze … führen muss.

Bemerkenswert ist die Betrachtung so genannter Stützjahre 2024 und 2034 (je ein Jahr VOR SzR des „Bundes“, S. 2 ). Entwickelt werden dabei ein … (mittleres Energieszenario), die umfangreiche Realisierung der energiepolitischen Landesziele (oberes Energieszenario), aber auch die mögliche bundesweit verzögerte Erreichung der Energiewendeziele (unteres Energieszenario.

Ein weiteres Paradigma lautet: Netzausbaumaßnahmen werden dann als wirtschaftlich vorteilhaft gewertet, wenn ihre Annuität aus Investitions- und Betriebskosten sowie maßnahmenabhängig auch aus Wertersatz für abgeregelte Energie günstiger als die Annuität von anderen elektrisch sinnvollen Maßnahmen ist.

Das bedeutet passenderweise zum Treffen des Vereins Platform Energy am 28.04.2018: Der derzeitige Merit-Order- Ansatz über variable Kosten ist nicht sinnvoll.

Hier wird ein durchgängig vernünftiger Ansatz vorgestellt, allerdings unter dem Vorbehalt, dass die gesetzte Annuität auf dem erwartbaren Lebenszyklus und nicht etwa auf Industrie-, Handwerks- oder irgendwelchen Verbandsinteressen beruht. Das Negativbeispiel für derartige Entscheidungen aus politischer Unvernunft liegt z. B. in der gesetzlichen Sonderabschreibung für energetische Sanierung im Immobiliensektor, explizit Mietwohnungsbereich. Hier eröffnet diese undurchdachte Regel den Weg zu enormen außertourlichen Mieterhöhungen, nur um massive Investitionen in energetische Sanierungen anzureizen. Die allerdings viel zu kurz gewählte Abschreibezeit von neun Jahren führt zu einer vollen Wälzung dieser Kosten auf die Mieten, was vor allem in Ballungszentren zu grotesk hohen Mietsteigerungen führt. Dabei liegt die Lebenszeit fast alle baulichen Energieeffizienzmaßnahmen an Gebäuden bei wenigstens 30 Jahren, eher bei 50. Dass es den Bauherren grundsätzlich frei steht, freiwillig selbst eine längere Abschreibezeit in Anspruch zu nehmen, scheint mittlerweile vollkommen unbekannt zu sein. Von daher wäre es dringende Aufgabe des Gesetzgebers, hier mit fester Hand nachzuhelfen.

Weitere bemerkenswerte Vorschläge bestehen in der Kopplung von Netzgruppen des Hochspannungsnetzes, sowie der klaren Vorstellung einer Implementierung von Power-to-Gas-Anlagen oder von Netzspeichern. Das Land Hessen ist an der Stelle allen anderen Bundesländern und vor allem dem Bund selbst weit voraus.

Für den Verein Platform Energy ergibt sich hier die Aufgabe, das im kommenden Landtagswahlkampf in Bayern deutlich zu machen und Vor allem Herrn Söder und seinen Wirtschaftsminister damit zu fordern.

Die vorgelegte Verteilnetzstudie erweitert die Betrachtungen zusätzlich durch die Bewertung möglicher Vorteile aus netzebenenübergreifender Netzplanung sowie für die kumulative Wirkung der Spitzenkappung über alle Netzebenen des Verteilnetzes.

Sie bedient sich dabei einer Zielnetzplanung vom Referenzzustand in den Zielzustand:

Für Hessen heißt das: Die Einspeisung von RES mit 1,18 GW (2014) zukünftig auf 3,15 GW (2024) bzw. 5,35 GW (2034) zu erhöhen. Leider sind auch in dieser Studie die Autoren der irreführenden Vorstellung verhaftet, dass Leistung „eingespeist“ wird und dann Leistung – wohin auch immer – „fließt“. Diese verkürzende Vereinfachung wird der technischen Realität nicht gerecht. Es handelt sich lediglich um eine Angabe zur installierten Leistung unter Standardnormbedinungen, und nicht um Einspeisung. Wo der Strom dann real auf kürzestem Wege hinfließt, wissen wir in der Regel nicht, da die entsprechenden Daten entweder gar nicht erfasst werden oder eben als Geschäftsgeheimnisse eingestuft unter Verschluss gehalten werden. Eine antiquierte, verkürzte Denkweise, die den technischen Notwandigkeiten nicht mehr gerecht wird.

Die Erwartungen der Verteilnetzstudie gehen dahin, das der Stromverbrauch sinken wird, die Einsparungen aber dadurch aufgewogen, dass die Verbrauchsgewohnheiten geringfügig wachsen.

Die Autoren kalkulieren (S. 4) mit – freilich idealisierten – Größenordnungen von neun Prozent / elf Prozent / Netzausbaukosten/ sechs Prozent.

Eine klare Botschaft, die auf der Eben BnetzA/ÜNB keinerlei Beachtung findet, lautet: Das heute nicht sicher abschätzbare Verhalten von Prosumer-Anwendungen wird einen

hohen Einfluss auf den Netzausbaubedarf haben. Das mag daran liegen, dass der „obersten“ Ebene das Potential der großen Masse der „Prosumer“ gleichhgültig ist, da diese in jedem Fall nichts als die finanziell zu verpflichtenden Erfüllungsgehilfen hochfliegender und hochrentabler Geschäftsmodelle sind, oder weil sie es schlicht nicht besser können. Was besser oder schlechter ist, bleibt der Beurteilung jedes einzelnen Lesers überlassen.

Der weitere Aspekt S. 9 (14) Regelbare Ortsnetztransformatoren (RONT): Diese Technologie bleibt trotz optimistischer Kostenannahmen auch zukünftig verhältnismäßig teuer im Vergleich zu anderen innovativen Maßnahmen. Ihr Einsatz verspricht nur in einem geringen Anteil der Niederspannungsnetze wirtschaftliche Vorteile, speziell wenn beidseitige Spannungsgrenzwertverletzungen auftreten. Daher sollte der Einsatz regelbarer Ortsnetztransformatoren nur nach detaillierter Wirtschaftlichkeitsprüfung und Risikoabwägung erfolgen.

An der Stelle bleibt die Studie weit hinter längst bekannten Lösungen zurück. Die RONT sind eine nette, funktionierende Technologie. Allerdings bekommt man zum salben Preis mehr Regelleistung plus eine beachtliche Menge an elektro-chemischer Speicherkapazität, wenn man statt auf RONT auf die bereits verfügbaren Alternativtechnologien setzt. (http://www.actensys.de/). Damit läßt sich das nachfolgend zutreffend beschriebene Problem intelligent lösen, da ein verbindlich angekündigter, massiver Ausbau spielend die Möglichkeit zur Ausschreibung bei unter 40% der aktuellen Marktpreise ermöglicht. Die bekannten RONT der üblichen Hersteller dagegen haben kaum mehr Spielräume im Preis und sind ohnehin in der Relation bereits jetzt zu teuer, weil sie im Grunde nichts können, ausser eben abregeln oder hochregeln.

(15) Lokale Netzspeicher: Neben offenen regulatorischen Fragen stehen dem wirtschaftlichen Einsatz der Netzspeicher insbesondere die hohen Technologiekosten entgegen. Erst ab einer Halbierung der Technologiepreise kann ihr Einsatz für die Spannungshaltung wirtschaftlich werden. Für strombegrenzte Netze ist die Vorteilhaftigkeit nachhaltig nicht gegeben.

Diese letzte Aussage steht ohne Nachweis da, und wird deshalb bestritten. Der Nachweis fehlt wohl deshalb, weil er ohnehin nicht gelingen kann. Dieser Satz ist möglicherweise aus politischen Gründen in die Studie gelangt, mit an Sicherheit grenzender Wahrscheinlichkeit sachlich falsch – schlicht weil intelligent platzierte Speichertechnologie (both ends) die Strombelastung von Leitungen zeitlich streckt, damit senkt und dabei trotzdem jederzeit die benötigte Leistung bereit stellt – und vor allem: Er ist überflüssig.

Daher ist die folgende Aussage der Studie auch ein weiteres Argument gegen die soeben bestrittene These:

(19) Unter den bewerteten innovativen Maßnahmen hat der netzdienliche Einsatz von Prosumer-Anwendungen das mit Abstand größte Potenzial für die Reduktion des Netzausbaubedarfs. Allerdings sind realistische Möglichkeiten, die netzdienlichen Beiträge der Prosumer-Anwendungen durch Netzbetreiber zu aktivieren, aufgrund der noch zu schaffenden technischen und prozessualen Voraussettungen derzeit noch begrenzt.

Das Problem ist also auch hier ein strukturelles, kein technisches. Selbst wenn es dann wieder nur halbwegs eindeutig sinnvoll weitergeht:

Dagegen muss das Risiko, dass Prosumer-Anwendungen zukünftig rein markorientiert, d.h. ungeachtet der Netzauslastung wirken, durch Sicherheitsaufschläge in den Netzplanungen abgebildet werden.

Richtig – und doch zu einseitig, weil im Grunde nur auf Leitungsquerschnitte und Spannungsebenen bezogen. Werden elektrochemische Speicher sinnvoll einbezogen, dann wird eine runde und schlüssige Sache daraus. Diese Art der Prosumeranwendungen ermöglicht viel mehr genau das Gegenteil: Gesicherte Begrenzung der Leitungsbelastungen.

Beispiel: Eine PV-Anlage auf einem Wohnhaus hat 18 kWpeak Nennleistung. Das bedeutet, in der Spitze kann die von dieser Anlage entwickelte Leistung locker das Doppelte betragen, wenn auch in der Regel nur für wenige Minuten. Das Netz würde man denken, würde auf diese 18 KW ausgelegt. Ist es aber nicht, weil es das noch lange nicht muss. Den Sicherheitszuschlag hat der Netzbetreiber längst in der 400 V Zuleitung auf Netzebene 1 im betreffenden Strang zum nächsten ONT (Ortsnetztrafo hin) integriert. Diese Zuschläge sind in normalen Wohngebieten dermaßen groß, dass die Ausbaupotentiale noch lange nicht erschöpft sind. Kommen viele solcher Anlagen dazu, kann es aber an den ONT zu Problemen kommen. Die könnte man dann zwar gegen größere Anlagen austauschen, doch auch die sind begrenzt.

Baut hingegen der Eigentümer der beschriebenen PV-Anlage einen soliden Speicher mit 10 kW Ladeleistung hinzu, kann er seine Einspeisung jederzeit um eben diese 10 KW begrenzen. Die maximal auftretende Leistung der PV kann rechnerisch ermittelt werden, über die Elektronik von Speichern kann jederzeit die Ladeleistung des Speichers auch auf ein Vielfaches der Nennleistung erhöht werden und die Abgabeleistung zuverlässig auf z. B. 10 kW eingestellt werden. Damit belastet diese Prosumeranwendung das „Netz“ nicht nur keineswegs, sondern entlastet es sogar. Und zwar höher, als die eigentliche Ausnahmeleistung des Prosumer- Anschlusspunktes liegt. Dehnt man das auf alle an dieser Leitung angeschlossenen Prosumer aus, würde mit Sicherheit jede Berechnung dieses Netzelements nach allüblich vereinfachter Art eine dauerhaft negative Netzlast ergeben, bzw. ein ständig “unterfordertes“ Netz darstellen.

Irgendwie gleichermaßen verwirrend wie interessant ist der folgende Punkt auf S. 18 Für diese Netzberechnungen verwendet die Verteilnetzstudie in sehr großer Anzahl ausschließlich Realnetze. Meine Frage. Welche denn sonst? Ein hypothetisches Netz zu verwenden könnte die Implementierung von Wunschparametern wirtschaftlich interessierter Kreise zur Folge haben und würde damit den Wunsch zur Begründung übertriebener und volkswirtschaftlich nutzloser Ausbauvorhaben zur Notwendigkeit hochadeln.

Dankbar bin ich über die auf S. 19: vorgestellte „klassische“, Netz-Ebenen-Betrachtung von „Netzebenen“, die ich für nichts als belanglosen bürokratischen Unsinn halte.

1. Die numerische Logik läuft der Realität exakt zuwider:

Netzebene 1: HöS / Übertragungsnetz / 220 kV und 380 kV (150 kV – 380 kV). Warum ausgerechnet das HöS mit der Nr., 1 als vermeintlich wichtigste Ebene apostrophiert wird, ist genauso unklar wie unlogisch. Das zentrale, wesentliche und wichtigste Netzelement ist die 0,4-KV Ebene hier als Netzebene 7 am Ende bzw., außerhalb der Bedeutungskette angesiedelt. An dieser Ebene hängen aber die 50 Millionen von 50 Millionen plus ein paar tausend Nutzeranschlüssen. An dieser Ebene hängen damit die, die sämtlich Bespassungsaktivitäten, die Shareholderempfänge der ÜNB, deren Geschäftsmodelle, deren Gewinne und vor allem deren überduchschnittliche Managervergütungen erwirtschaften und bezahlen. Damit ist sie definitv die wichtigste Netzebene und gehört sinnvollerweise an Position 1. Für das, was heute die Managementebenen dieser Strukturen leisten, waren die Dotationen der früheren Beamten auf diesen Positionen mehr als aureichend.

Netzebene 2: Umspannwerke an den Netzknoten HöS zu HS und umgekehrt. In wie fern eine Anzahl Umspannwerke eine eigenen Netzebene bilden sollen, mag sich jeder selbst fragen. Demnach bilden auch Mobilfunkmasten oder Autobahnkreuze für sich bereits eigene Netze und Netzebenen.

Netzebene 3: HS / Verteilnetz / 110 kV (60 kV – bis 150 kV)

Netzebene 4: Umspannwerke HS / MS

Netzeben 5: MS / Verteilnetz/ 1 kV bis 60 kV.

Netzebene 6: Trafostationen / Umspannung MS / NS

Netzebene 7: 3-phasiges „Haushaltsstromnetz“, 230 V und 400 V. Theoretisch bis 1 kV.

Trafostationen bis 680 kVA / ca. 750 kW.

Sehr dankbar wiederum bin ich für die Einführung einer auf dem Spielfeld von BnetzA und ÜNB vernachlässigten Funktionsgröße, siehe S. 29:

Mithilfe einer logistischen Funktion (Technologiediffusionskurve) wird der zeitliche Verlauf des Ausbaus der Elektromobilität entsprechend Abbildung 7 angenommen. Sofern für 2050 ein Anteil E-Kfz von 80% erwartet wird, ergibt dies für das Jahr 2024 eine

Durchdringung mit E-Kfz von 2% und für das Jahr 2034 eine Durchdringung von 19%.

Diese Technologiediffusionskurven sollten entsprechend ihre Anwendung bezüglich elektrochemischer Speicher erhalten.

Ebenfalls sehr rational werden weitere Ansätze entwickelt.

S.30 Anders als in den Energieszenarien für Hessen erfolgte hier keine weitere Differenzierung, sodass für das untere, mittlere und obere Energieszenario jeweils gleiche Annahmen getroffen wurden. Die Regionalisierung der zusätzlichen Erzeugungsleistung erfolgt mit eigenen Modellen für den Zubau von Windenergie- und Photovoltaik-Anlagen.

Im Fall der Windenergie werden im Zubaumodell die Bestandsanlagen entsprechend ihres jeweiligen Inbetriebnahmejahres berücksichtigt. Ein Zubau neuer Windenergieanlagen erfolgt auf zuvor ermittelten Potenzialflächen, unter anderem unter Berücksichtigung von

1.000 Metern Abstand zu Wohnsiedlungen sowie der Windressource.

Bei Zubau der Photovoltaik wird ein Anteil von 20% an Photovoltaik-Freiflächenanlagen berücksichtigt, während achtzig Prozent als Photovoltaik-Aufdachanlagen abgebildet werden.

Die Photovoltaik-Freiflächenanlagen werden entlang der Randstreifen von Autobahnen und Schienenwegen verteilt, während Photovoltaik-Aufdachanlagen auf Basis der CORINE

Landbedeckungsdaten [16] innerhalb der Siedlungsflächen zugebaut werden.

Dieser Ansatz klingt vernünftig, hängt aber wieder zu sehr von renditegetriebenen Entscheidungen ab. Derzeit ist der gesamte PV-Markt weitgehend über die diversen Manipulationen des EEG in den vergangene Jahren zum Erliegen gekommen. Rentabilität für den Privatanwender wird gezielt unterbunden. In der Regel lohnen sich nur noch einzelne größere Projekte und die Menge der investierenden Idealisten mit Potential dürfte erschöpft sein. So wird unter Beibehaltung der bundesrechtlichen Festlegungen alles weitere vorerst Theorie bleiben. Fortschritt wird es jedenfalls im Sinne einer vernünftigen Energiepolitik mit den vier stärksten Fraktionen im Bundestag die nächsten vier Jahre keinesfalls geben. Vielmehr sind Rückschritte zu erwarten (Meine Prognose). Dennoch ist das folgende ein sehr guter Ansatz.

S 33 Mithilfe dieser Geodatensätze lassen sich die zu erwartenden Erzeugungsleistungen und Lasten bis auf einzelne Niederspannungsnetzanschlusspunkte zuordnen. Die zur Regionalisierung angewendeten Methoden wurden zum Teil im Rahmen des BMWi-geförderten Projekts STERN [19] entwickelt.

Eine dankenswerte Information findet sich später:

S.60 Die automatisierte Netzausbauplanung basiert auf der Open-Source Netzberechnungssoftware pandapower [30][31], welche durch das Fraunhofer IWES IEE (vormals IWES) in Kooperation mit der Universität Kassel entwickelt wurde.

S. 66 Die Netzplanungen auf der Mittelspannungsebene werden als Zielnetzplanungen für die Stützjahre 2024 und 2034 durchgeführt. Für die Stützjahre werden Energieszenario-Ausprägungen erstellt und die prognostizierten Leistungen dem Netzmodell zugeordnet.

Hierbei werden Erneuerbaren Energieerzeugungsanlagen, die in der Niederspannung angeschlossen werden, genauso wie E-Kfz und Wärmepumpen über eine Zuordnung der Liegenschaften zu Ortsnetzstationen aggregiert und als Ersatz-Einspeisung bzw. Last modelliert.

Windenergie- und Photovoltaik-Freiflächenanlagen werden entweder direkt an das Mittelspannungsnetz angeschlossen oder als Direktanschluss an die Umspannebene ausgeführt.

Hier findet sich neben einer Beschreibung der Praktikabilität eine Neuerung, die Auswirkungen auf die Betrachtung der „oberen“ Netzeben haben muss.

Im nachfolgend beschrieben finden sich etliche Ansätze,die auch für die ÜNB und die BnetzA und vor allem auch die EU-Ebene wertvoll sein könnten. Dennoch bleibt die Studie aus Hessen auch hierhinter den gesicherten technischen Möglichkeiten deutlich zurück.

S. 75 Für die Netzplanung ist inzwischen ein relativ breites Spektrum an innovativen Maßnahmen hinzugekommen, um auftretenden Netz- bzw. Netzbetriebsmittelüberlastungen anders als durch konventionelle Netzverstärkung entgegenzuwirken. An diese innovativen Maßnahmen sind zugleich hohe Erwartungen geknüpft, dass durch deren vermehrten Einsatz eine nennenswerte Reduktion der Netzausbaukosten erzielt werden kann.

Die innovativen Maßnahmen können wiederum einzeln oder in Kombination eingesetzt werden, um den bestmöglichen Beitrag zu erbringen. Die möglichen komplexitäts- und aufwandstreibenden Rückwirkungen von kombinierten innovativen Maßnahmen auf die Betriebsführung, werden für die Netze und Netzbetreiber deutlich verschieden ausfallen und daher im Rahmen der Auswirkungsanalyse nicht in die Bewertung einbezogen.

Innovative Maßnahmen:

Cos phi = konstant:

cos ϕ = konstant: Blindleistungsbereitstellung durch Erneuerbare Erzeugungsanlagen (in der Verteilnetzstudie modelliert für Windenergie- und Photovoltaik-Anlagen) zur Spannungsregelung mit einem konstanten Leistungsfaktor.

Q(U)-Regelung:

Q(U)-Regelung: Blindleistungsbereitstellung durch Erneuerbare Erzeugungsanlagen zur Spannungsregelung in Abhängigkeit der Spannung am Netzanschlusspunkt.

cos phi (P)-Regelung:

cos ϕ (P)-Regelung: Blindleistungsbereitstellung durch Erneuerbare Erzeugungsanlagen zur Spannungsregelung in Abhängigkeit der Spannung am Netzanschlusspunkt.

Durch die Blindleistungsbereitstellung wird eine Phasenverschiebung des Wechselstroms im Netz erreicht und dadurch auf die Spannung Einfluss genommen. Im Besonderen können durch Blindleistungsbereitstellung der, bei vermehrter Einspeisung aus Erneuerbaren Energieerzeugungsanlagen auftretenden, Spannungsanhebung entgegengewirkt und damit Grenzwertüberschreitungen vermieden oder reduziert werden.

Die Blindleistungsbereitstellung kann in den Verteilnetzen alternativ zu den oben genannten Erneuerbaren Energieerzeugungsanlagen auch durch Kraft-Wärme gekoppelte Anlagen oder andere Erzeuger erfolgen. Abgestimmt auf die Schwerpunktlegung in den Energieszenarien wird in der Verteilnetzstudie die Blindleistungsbereitstellung aus Erneuerbaren Energieerzeugungsanlagen berücksichtigt.

Alles richtig, jedoch in einem Szenario bereits mit geringer Durchsetzung der Struktur durch elektrochemische Speicher entfällt dafür zunehmend der Bedarf, da die Leistungelektronik der Wechsel- und Gleichrichter an den Speichern diese Aufgaben automatisch mit übernimmt.

Eine starke Durchsetzung der gesamten Netzinfrastruktur mit Speichern bewirkt im Prinzip eine permanente galvanische Trennung der einzelnen realen Netzebenen (1-4) untereinander und von den letztlich die Blindleistung verursachenden Anwendungen. Damit werden Frequenzen, cos ϕ- Differenzen, Spannungen sowie Stromstärken und damit Leistungsabgabe und Aufnahme vollautomatisch auf jedem einzelnen Netzelement in Millisekunden geregelt und die hauptsächliche Arbeit steuernder Leitstände entfällt.

Es genügen dann technische Teams zum Austausch eventuell ausfallender Einzelelemente, besser gesagt Bauteile. Da dies für den Notfall und bei entsprechenden routinemäßigen Übungen ohnehin schon eine Aufgabe des Katatrophenschutzes (bsp. THW) ist, kann letztlich dieser den Austausch erledigen.

Spitzenkappung:

Spitzenkappung: Spitzenkappung ist die Berücksichtigung der gesetzlich gegebenen Möglichkeit, die begrenzte Abregelung von Einspeisung aus Erneuerbaren Energieerzeugungsanlagen bereits bei der Netzplanung zu berücksichtigen und die Netze darauf hin geringer, als zur Aufnahme der gesamten möglichen Einspeisung aus diesen Anlagen erforderlich wäre, zu dimensionieren. Gegenwärtig wird erlaubt, bis zu 3% der prognostizierten jährlichen Einspeisung aus Erneuerbaren Energieerzeugungsanlagen entsprechend abzuregeln. Durch das Abregeln von Einpeisespitzen wird die Auslastung des angeschlossenen Netzes sowie der Spannungsanstieg am Netzanschlusspunkt verringert. Es wird grundsätzlich zwischen statischer Spitzenkappung und dynamischer Spitzenkappung unterschieden. Bei statischer Spitzenkappung wird die Einspeiseleistung der Anlagen permanent begrenzt. Bei der dynamischen Spitzenkappung erfolgt die Abregelung bedarfsweise in Abhängigkeit von der gegenwärtigen Netzauslastung.

In der Verteilnetzstudie wird Einspeiseleistung je nach Netzebene und Anlagentyp verschieden stark reduziert. Die in den Netzplanungen der Verteilnetzstudie angerechnete Abregelung ist in Tabelle 17 bezogen auf die Nennleistung der Anlagen dargestellt.

Der Begriff „Spitzenkappung“ ist ein lange bekannter, wohl definierter, technischer und klar deutlich allgemeinerer Begriff, als es diese auf ein einzelnes Gesetz im Bereich der elektrischen Energie bezogene Paraphrase vermuten läßt. Spitzenkappung ist längst Realität bei verschiedenen technischen Anwendungen., wie z. B.der Heizungstechnik, und dient der Steigerung der Wirtschafltichkeit, indem die theoretisch für eine Anwendung benötigte Höchstleistung gezielt reduziert wird, um Betriebs- und Investitionskosten bezogen auf die nutzbare Energie ebenfalls zu reduzieren. Denn bezahlt werden muss vor allem die Energie, der Leistungspreis jeder Anwendung ist im Grunde nur die verzinste Abschreibung der Baukosten. Eine umfassendere Betrachtung der Energie kommt mit dem hier vorgestellten eingeschränkten Begriff der Spitzenkappung nicht zu Recht. Allein von daher ist er in dieser speziellen Form nicht überzubewerten und unglücklicherweise als technisches Mittel im Rahmen der Netzbetrachtungen durch diese eingeschränkte Betrachtung sogar unentfaltbar und wenig wirksam.

Netzdienlicher Einsatz von Prosumer-Anwendungen:

Prosumer im Sinn dieser Betrachtungen sind Netznutzer, die Energie beziehen, speichern oder in das Netz einspeisen können. Dies ist beispielsweise für Haushalte mit den Anwendungen Photovoltaik-Aufdachanlage und lokalem Speicher oder E-Kfz gegeben. Bei einem netzdienlichen Einsatz von Prosumer-Anwendungen kann das Netz entlastet werden, wobei diese Entlastung sowohl durch vermiedene bzw. verschobene Einspeisung oder vermiedenen bzw. verschobenen Verbrauch erzielt werden kann.

Kann nicht nur, sollte auch. Diese Chancen liegen zu lassen wäre Dummheit.

Als Sensitivität wird für jede Netzebene außerdem ermittelt, wie sich ein rein marktorientiertes Verhalten von Prosumer-Anwendungen auswirken würde, welches sich synchron an Marktsignalen ausrichtet und keine Rücksicht auf die aktuelle Netzauslastung nimmt. Das Verhalten der Prosumer-Anwendungen wird in beiden Fällen durch veränderte Gleichzeitigkeitsannahmen modelliert (vergleiche Tabellenanhang). Beim netzdienlichen Einsatz werden die Gleichzeitigkeiten der Anwendungen, die sich netzentlastend auswirken, relativ erhöht und die Gleichzeitigkeiten netzbelastender Anwendungen reduziert.

Im Einspeisefall kann die Einspeisung aus Photovoltaik-Anlagen und Energieabgabe von Speichern an das Netz reduziert und der Verbrauch durch Laden des E-Kfz erhöht werden.

Bei rein marktorientiertem Verhalten von Prosumer-Anwendungen werden die Gleichzeitigen gegenüber dem netzdienlichen Einsatz entgegengesetzt verstellt.

Überflüssig, wenn man eine konsistente Implementierung geeigneter Speicher einbezieht. Als privater oder gewerblicher Nutzer würde ich ohne Wenn und Aber meinen selbst generierten Strom entweder direkt verbrauchen oder eben Speichern und mein E-auot dann eben nachts aus dem eigenen Batteriespeicher laden.

Hochtemperatur-Leiterseile (ACCR):

Hochtemperaturseile (ACCR – Aluminium Conductor Composite Reinforced): Hochtemperaturleiterseile sind Leiterseile, die gegenüber den konventionell verbauten Leiterseilen auf eine deutlich höhere maximale Betriebstemperatur ausgelegt sind und dadurch eine höhere Stromtragfähigkeit haben. Dies ermöglicht die Verstärkung der Freileitungen mit Beibehaltung der bestehenden Masten. Lediglich die Leiterseile und Klemmen müssen ausgetauscht werden. Die erreichbare Stromtragfähigkeit ist doppelt so hoch wie beim Einsatz der konventionellen Leiterseile.

Vernünftiger, aber eben doch auch begrenzter Ansatz. Eine deratige Ertüchtigung dennoch als vorrangig zu prüfen ist dennoch sinnvoll. Die Frage der Haltbarkeit bei extremen Wetterbedingungen aber sollte ebenfalls beantwortet werden. Zudem ist eine Umweltverträglichkeitsprüfung ebenfalls sinnvoll, da hohe Temperaturen zwar verarbeitet werden könne, aber dabei auch Bestandteile der Leitungen verdampft werden. Was ist damit?

Was hier aber fehlt, sind alternative Technologien zur Anwendung bei unterirdischer Leitungsführung. Diese Potentiale, bei denen sich Leitungen sogar gezielt kühlen lassen und so auf engstem Raum hohe Stromübertragungskapazitäten verlegt werden können, sind bis dato leider vollkommen unerwähnt. Technisch aber überhaupt keine Herausforderung. Für gezielte gekühlte Erdverlegung stehen zudem tausende Kilometer bundeseigener Trassen bereits zur Verfügung: Autobahnen, Bundestrassen, Landstrassen. Gerade in Verbindung mit den Überlegungen zur Elektrifizierung von Autobahnen für LKW mit Oberleitungen und der zunehm,enden Errichtugn von Ladestationen – notwendiger- und sinnvollerweise an stark frequentierten, verkehrsreichen Strassen – ergäben sich Synergiepotentiale, bis hin zur kompletten Verlegung des Transportverkehrs in den Untergrund.

Leistungskompoundierung:

Die Leistungskompoundierung ist eine leistungsflussabhängige Transformatorregelung mit dynamischer Spannungssollwertanpassung. Durch Ertüchtigung von Transformatoren mit Zubau der Regelungskomponente können das zur Verfügung stehende Spannungsband besser ausgenutzt und folglich Spannungsgrenzwertverletzungen verringert bzw. vermieden werden.

Sehr nett. Aber überflüssig, da – ungeachtet der illusorisch irreführenden Vorstellung fließender Leistungen und Lasten – diesen Job passend dimensionierte elektrochemische Speicher an allen Netzverknüpfungspunkten so oder so automatisch mit erledigen. Und dabei noch weitere Vorteile bieten.

Regelbarer Ortsnetztransformator (RONT)

Regelbarer Ortsnetztransformator: Regelbare Ortsnetztransformatoren können mittels eines variablen Übersetzungsverhältnisses die unterspannungsseitige Netzspannung unabhängig von der Oberspannungsseite auf einen bestimmten Sollwert regeln. Der Effekt entspricht dem Umstufen von konventionellen Transformatoren mit dem Unterschied, dass regelbare Ortsnetztransformatoren diese Umstufung bedarfsabhängig durchführen. Der Einsatz der regelbaren Ortsnetztransformatoren führt zur besseren Ausnutzung des Spannungsbands.

Sehr nett. Aber überflüssig, da – ungeachtet der illusorisch irreführenden Vorstellung fließender Leistungen und Lasten – diesen Job passend dimensionierte elektrochemische Speicher an allen Netzverknüpfungspunkten so oder so automatisch mit erledigen. Und dabei noch weitere Vorteile bieten.

Die betrachteten Technologien decken verschiedene Einsatzszenarien ab. Spitzenkappung und netzdienliches Prosumerverhalten sind vor allem bei Betriebsmittelüberlastungen sinnvoll. Lokale Blindleistungsbereitstellung eignet sich am besten, um räumlich begrenzte Spannungsbandverletzungen zu kompensieren. Der Einsatz eines regelbaren Ortsnetztransformators ist hingegen vor allem bei gravierenden Spannungsbandverletzungen bzw. bei Spannungsproblemen sowohl im Starklast- als auch im Rückspeisefall sinnvoll.

Beides ist nicht nur bei Betriebsmittelüberlastungen sinnvoll, sondern ganz wesentlich als Planungselement um diese Betriebsmittel vernünftig und effizient auszulasten. Es ist ja nett, wenn man eine Leitung hat, die z. B. die Stromtragfähigkeit für 2.300 MW Leistung am liefernden Ende hat, aber bereits bei 25% oder 30% Auslastung als statistischem Wert aus Gründen der Vorsicht bereits mit der Planung einer weiteren Leitung begonnen werden muss, weil das die Menge an übertragener Energie ist, bei der allerhöchstwahrscheinlich bereits vereinzelt signifikante Überlastungen auftreten. Das wäre in etwa so, als würde man einen zweiten PKW kaufen, falls mal Oma un Opa mit der Bahn zu Besuch kommen und der vorhandene dann nicht für alle Familienmitglieder ausreicht. Oder man kann auch wahlweise grundsätzlich mit dem 40-Tonner zu Aldi fahren, falls mal was Besonderes dabei ist, dass man dann gleich komplett mitnehmen kann.

Von dieser Denkweise sollten sich vor allem die VNB schnell verabschieden, denn die ÜNB und die BNetzA haben zu der fälligenLoslösung von diesem Paradigma nicht das hinreichende kreative Potential.

Noch ein paar Highlights:

Ab S. 83 schöne Zusammenstellung von Hinweisen auf notwendige Investitonskosten, sehr aufschlussreich.Nur die Kosten für z. B, RONT sind unklar. Für 29.000 € gibt es den sicher nicht. Da fehlen nur zwei bis drei Nullen.

S. 99 … Kostenreduktion von bis zu 7% bewirken kann (Median)…

…in Kombination mit dynamischen Blindleistungsbereitstellungsstrategien,…11%

S. 100 Begrenzte Wirksamkeit von Blindleistungsbereitstellung / Auswirkung der Spitzenkappung / höchste Einsparpotentiale = Netzdienlicher Einsatz von Prosumeranwendungen

In der Auswirkungsanalyse als sehr wirksam auf die Entlastung des Netzausbaus in der Hochspannung haben sich die verschiedenen Anwendungen der Spitzenkappung in unterlagerten Netzen erwiesen. Die Spitzenkappung vermindert dabei durch Abregelung von Einspeisespitzen die auftretenden Überlastungen der Leitungen. In Kombination mit Hochtemperaturleiterbeseilung und dynamischer Blindleistungsbereitstellung wird durch Spitzenkappung eine Reduktion der Netzausbaukosten um 14% im Vergleich zu rein konventionellem Netzausbau möglich. Der bei Spitzenkappung zu leistende Wertersatz kann allerdings zu abweichender Bewertung der Vorteilhaftigkeit der Maßnahmen führen, wie in der Sonderuntersuchung Spitzenkappung näher ausgeführt wird.

Die höchsten Einsparpotenziale für den Netzausbau in der Hochspannungsebene würden auch bereits ohne Kombination mit anderen Maßnahmen erzielt, wenn ein netzdienlicher Einsatz von Prosumer-Anwendungen im angenommenen Umfang realisiert werden könnte. Allerdings unterstellt diese Bewertung neben der grundsätzlichen Aktivierbarkeit der Prosumer-Anwendungen durch Hochspannungsnetzbetreiber zusätzlich die noch zu schaffende Möglichkeit, den netzdienlichen Einsatz von Prosumer-Anwendungen netzübergreifend und flächendeckend zu aktivieren. Neben den regulatorischen Voraussetzungen sind hierzu die Herstellung einer umfänglichen, harmonisierten Kommunikationsinfrastruktur, Koordinierungsverfahren sowie die kooperative Mitwirkung der Prosumer erforderlich. Die entsprechenden Reduktionspotenziale für den Netzausbau sind daher aus heutiger Sicht noch abstrakt und können noch nicht in die Netzplanungen der Netzbetreiber aufgenommen werden. Für eine gesamtwirtschaftliche Bewertung, die eventuell anzurechnende Leistungs- und/oder Arbeitskosten zur Beurteilung der Vorteilhaftigkeit von netzdienlichen Prosumer-Anwendungen berücksichtigt, fehlen heute Anhaltspunkte über deren mögliche Ausgestaltung.

Der Einfluss der Prosumer-Anwendungen kann im gegenteiligen Fall eines rein marktorientierten Verhaltens maßgeblich zur Aus- und Überlastung der Hochspannungsnetze beitragen und zusätzlichen Netzausbaubedarf verursachen. Die hohe Gleichzeitigkeit von Prosumer-Anwendungen bei weitgehend synchroner Reaktion auf relevante Marktsignale würde es erfordern, die Hochspannungsnetze auf insgesamte höhere Leistungen auszulegen und zusätzlich im Median etwa 8% an Netzausbaukosten verursachen.

Im Vorfeld der Auswirkungsanalyse wurden im Rahmen der Verteilnetzstudie alternative Modellierungen des Randnetzes als Grundlage für die Netzberechnungen geprüft. Darunter die übliche vereinfachende Annahme des nur durch die Übergabestellen begrenzten Leistungstransfers bei voller Aufnahmefähigkeit der übertragenen Leistung durch die Übertragungsnetze („Kupferplatte“) sowie die Integration von lokalen Randnetzmodellen, die einzelnen Verteilnetzbetreibern entweder durch die Übertragungsnetzbetreiber bereitgestellt wurden oder die von den Verteilnetzbetreibern aufgrund von Betriebserfahrungen hergestellt wurden.

Diese Voruntersuchungen zeigten erhebliche Einflüsse auf den berechneten Wirk- und Blindleistungsaustausch zwischen den Höchst und Hochspannungsnetzen.

Das vereinfachende Randnetzmodell wird bei Netzbetrachtungen grundsätzlich immer dann herangezogen, wenn für das Randnetz keine gesicherten Informationen vorliegen.

Bei der Anwendung dieses vereinfachenden Randnetzmodells auf die Hochspannungsnetze in Hessen wurde festgestellt, dass die tatsächlichen Leistungsflüsse überwiegend unterschätzt werden.

Die berechnete Auslastung von über 400 Leitungen des Hochspannungsnetzes ändert sich bei Verwendung des detaillierten Randnetzmodells signifikant mit der Folge, dass zusätzliche bzw. stellenweise andere Grenzwertüberschreitungen für die Betriebsmittelauslastung bzw. für die Spannung festgestellt werden, in deren Folge Netzausbaumaßnahmen zu planen sind.

(S. 101 Baustelle für Jörg Diettrich)

S. 102: Es wurden teilweise Abweichungen von 60 bis 100 MW auf den Leitungsabschnitten … festgestellt….

Was ein passender Speicher an einem HS/HöS-Knoten locker auslgeichen würde.

S. 103/104: Ist im Grunde der argumentative Nachweis aus dem Verteilnetz heraus, dass die ÜNB – Netzberechnungen überhaupt nicht zuverlässig sein können…

Es entstehen die Parallelwelten HS und HöS: Diese schaffen zwei parallele Übertragungsysteme auch über große Distanzen, die nicht verknüpft betrachtet werden, durch Kopplung derzeit physisch getrennter HS-Netze. Die Energieflüsse sind dadurch nicht mehr wirklich berechenbar. Deshalb wäre dieses Szenario in jedem Fall besser als Bottom-Up aufzubauen.

Im Grund könnten die VNB den ÜNB mit einer weitgehenden Kopplung ihrer Netze eine Menge Wasser abgraben. Es wurden teilweise Abweichungen von 60 bis 100 MW auf den Leitungsabschnitten … festgestellt….

S. 103 / S. 104 / S. 105

Die von den Verteilnetzbetreibern bereitgestellten lokalen Randnetze eignen sich grundsätzlich für die Netzplanungen der jeweils eigenen Hochspannungsnetze. Die unter Einsatz dieser lokalen Randnetze ermittelten Netzplanungen werden regelmäßig im Dialog mit den Übertragungsnetzbetreibern plausibilisiert. Integrierte Planungen über mehrere Hochspannungsnetze unter Berücksichtigung der Übertragungsnetze werden damit jedoch nicht durchgeführt.

Entsprechend zeigte sich im Rahmen der Voruntersuchungen, dass die lokalen Randnetze jeweils unter solchen spezifischen Annahmen hergestellt sind, dass sie sich nicht zu einem integrierten, plausiblen und rechenfähigen Netzmodell vereinigen lassen. Nach Integration der lokalen Randnetze mussten wesentliche Korrekturen in das integrierte Netz eingearbeitet werden, um die generelle Rechenfähigkeit herzustellen.

Die Hochspannungsnetze in Hessen werden in mehreren Netzgruppen betrieben, die auf der eigenen Netzebene derzeit nicht direkt miteinander gekoppelt sind. Die elektrische Verbindung zwischen diesen Netzgruppen erfolgt ausschließlich durch das überlagerte Höchstspannungsnetz, wie die Abbildung 54 exemplarisch darstellt.

Unter den bisher vorherrschenden Bedingungen wurden die Verteilnetze (rechnerisch) im Wesentlichen durch das Übertragungsnetz gespeist und waren damit aus Sicht des Übertragungsnetzes hauptsächlich elektrische Lasten. Mit zunehmender Einspeisung aus Erneuerbaren Energieerzeugungsanlagen in die Verteilnetze, wie sie auch in den Energieszenarien für Hessen auftritt, ändert sich die Austauschrichtung zwischen den Netzebenen abhängig vom Ausmaß der regionalen Einspeisung. In Regionen mit hoher Einspeisung aus Erneuerbaren Energieerzeugern kann sich die Austauschrichtung in Abhängigkeit von Sonnen- und Windverfügbarkeit ändern, womit eine signifikante Rückspeisung aus den Hochspannungsnetzen in das Übertragungsnetz auftreten kann.

Theoretisch, falls die Netzkonten dazu technisch offen sind sind und dies nicht verhindert wird. Immerhin findet dort eine manuelle Fernsteuerung durch die Dispatcher statt.

Die Abbildung 55 zeigt exemplarisch eine für Hessen relevante Situation, in welcher die linke Netzgruppe mit einem hohen Anteil an Einspeisung aus Erneuerbaren Energieerzeugern rückspeist, während die rechte Netzgruppe als klassisches Versorgungsnetz die Leistung aus dem Übertragungsnetz bezieht, so dass das Übertragungsnetz hier zur Herstellung eines regionalen Ausgleichs zwischen beiden Netzgruppen zusätzlich beansprucht wird. Die Austauschleistung zwischen den Netzgruppen überlagert die Transitflüsse im Übertragungsnetz und kann abhängig von der Situation eine Be- oder eine Entlastung des Übertragungsnetzes verursachen.

Eben deshalb: Speicher bauen, um diese gelegentlichen Spitzen zu kappen und auch um mehr RES zu ermöglichen, die dann zeitversetzt genutzt werden können.

Durch eine direkte Kopplung von Netzgruppen auf der Hochspannungsebene (in Abbildung 55 rot dargestellt) lässt sich die, durch den regionalen Ausgleich bedingte, ungewünschte zusätzliche Beanspruchung des Übertragungsnetzes mindern und der Ausgleich auf die Hochspannungsebene verlagern. Unter Umständen findet durch die Kopplung eine Entlastung des Hochspannungsnetzes statt, wodurch Netzausbaukosten vermieden werden können.

Gut gemeint, aber sicher nicht im Interesse der Stakeholder des Übertragungsnetzes. Am Ende wird es als „Kompromiss“ wohl auf beides hinauslaufen und doppelte Kosten verursachen.

Über das Hochspannungsnetz wird dabei eine zum Übertragungsnetz parallele Leitungsverbindung hergestellt, die ebenfalls ungewünscht einen Teil der Transitflüsse aus dem Übertragungsnetz aufnehmen kann. Laut [38] können verlagerte Transitflüsse die Leitungen in Hochspannungsnetzen mit mehreren Verknüpfungspunkten zum Übertragungsnetz je nach Topologie mit bis zu 30% ihrer Übertragungskapazität belasten und somit die Vorteile der Kopplung von Hochspannungsnetzen überwiegen.

Auch deshalb: Speicher bauen.

Eine Kopplung von Netzgruppen auf der Hochspannungsebene kann vorteilhaft sein, wenn Einspeisung in der einen und Entnahme in der anderen Netzgruppe zeitlich synchron verlaufen.

Gesichert funktioniert das nur mit Akku-Speichern

Dadurch lassen sich die notwendigen Transportkapazitäten reduzieren, wenn die regenerative Energie in nahgelegeneren Lastschwerpunkten genutzt wird, anstatt diese über längere Strecken zu transportieren.

S.109

Netzdienlicher Einsatz großtechnischer Power-to-Gas Anwendungen

Die Power-to-Gas Technologie wandelt Strom in Wasserstoff oder Methan um und stellt damit primär ein eigenständiges Geschäftsmodell für Anlagenbetreiber dar, um Erträge aus der Vermarktung des nach Energieumwandlung erzeugten Gases zu erwirtschaften.

Power-to-Gas Anlagen sind auch technologisch geeignet, um das Verteilnetz bei auftretender hoher Einspeisung aus Erneuerbaren Energieerzeugungsanlagen zu entlasten. Die sonst durch das Verteilnetz aufzunehmende Leistung kann durch Power-to-Gas Anlagen dem Verteilnetz entzogen werden, so dass Überlastungen im Verteilnetz und folglich auch der daraus resultierende Netzausbaubedarf vermieden werden können.

In den Hochspannungsnetzen können insbesondere großtechnische Power-to-Gas Anlagen solche netzdienlichen Beiträge leisten und damit potenziell den Netzausbaubedarf reduzieren.

S. 114

Umspannebene zwischen Hoch- und Mittelspannung

6.2.1 Veränderte Versorgungsaufgabe

Die Umspannebene und somit die Umspannwerke haben die Aufgabe, die notwendigen Leistungen den unterlagerten Netzebenen grundsätzlich mit einer (n-1)-Ausfallsicherheit zur Verfügung zu stellen und zunehmend auftretende Rückspeisungen aufzunehmen.

Speziell die Rückspeisungen infolge des Zubaus von Erneuerbaren Energieerzeugungsanlagen führen in hohem Maße zu Anpassungsbedarfen für die Umspannwerkskapazitäten.

Diese Rückspeisungen in gemessener und aufgezeichneter Form würde ich gern mal sehen…

Die Anpassungsbedarfe sind dabei vermehrt von den konkreten Zubaumengen und räumlichen Verteilungen des Zubaus (Energieszenario-Ausprägungen) abhängig. Bei der Betrachtung und Bewertung der Rückspeisungen in die vorgelagerte Netzebene wurde eine (n-0)-Betrachtung gewählt, da für Rückspeisungen keine (n-1)-Anschlussverpflichtung besteht. Anderenfalls würden die erforderlichen Ausbaumaßnahmen überschätzt. Die Auswirkungen sind im Nachfolgenden beschrieben.

S. 117

Auch in der Umspannebene ließen sich mit im Median etwa 12% durch einen netzdienlichen Einsatz von Prosumer-Anwendungen die relativ höchsten Einsparungen an Netzausbaukosten erzielen. Die tatsächliche netzdienliche Aktivierbarkeit der Prosumer-Anwendungen und des betreffenden Einsparpotenzials ist aber auch hier unter gegenwärtigen Rahmenbedingungen noch nicht gegeben (vergleiche Kapitel 6.1.2.3).

Ein marktorientierter Betrieb von Prosumer-Anwendungen führt zu Netzausbaubedarf in einem ähnlich hohen Umfang wie in der Hochspannungsebene.

Verteilnetze der Mittelspannungsebene

6.3.1 Veränderte Versorgungsaufgabe

In den Mittelspannungsnetzen verändert sich die netzauslegungsrelevante Einspeise- und Lastsituation für die Stützjahre 2024 und 2034 vorwiegend aufgrund der hohen zu integrierenden Einspeisung aus dem Zubau von sowohl Windenergie- als auch Photovoltaik-Anlagen. Dieser Zubau erfolgt mit Neuanlagen und durch Repowering bzw. Neubau von Anlagen an dafür zulässigen Standorten.

Bis 2034 wird aufgrund der angenommenen wirtschaftlichen Nutzungsdauern der überwiegende Teil der Erneuerbaren Energieerzeugungsanlagen ausgetauscht sein und der gesamte Anlagenbestand verjüngt werden. Dabei werden im Vergleich zum Referenzjahr in der Regel leistungsstärkere Anlagen aufgestellt, zu deren Netzeinbindung neue Netzanschlüsse geschaffen werden müssen.

Für Windenergieanlagen ist der Zubau (Neubau und Repowering) auf die durch das Land Hessen ausgewiesenen Windvorrangflächen beschränkt. Die bestehenden Windenergieanlagen außerhalb dieser Windvorrangflächen werden bei Erreichen der wirtschaftlichen Nutzungsdauer ersatzlos zurückgebaut. So ergibt sich regional für einige Netze in Hessen entgegen dem, in den Energieszenarien definierten, Trend ein effektiver Rückbau an Windenergieanlagen, der rückwirkend Überkapazitäten in diesen Netzen hinterlässt.

Die gemäß den Energieszenarien erwartete starke Zunahme an neuen Verbrauchern, insbesondere der E-Kfz, schlägt sich in den Mittelspannungsnetzen nur in geringerem Umfang nieder. Der bilanzielle Ladeleistungsbedarf der hohen Anzahl hinzukommender E-Kfz relativiert sich in der Auswirkungsanalyse durch die angenommenen Gleichzeitigkeitsfaktoren, so dass nur ein verhältnismäßig geringer Einfluss der E-Kfz auf die Mittelspannungsnetze resultiert. Die im Energieszenariorahmen ausgewiesene marginale Abnahme des konventionellen Verbrauchs ist nicht auslegungsrelevant und wird nicht modelliert.

In den betrachteten Mittelspannungsnetzen wirken sich die oben beschriebenen Effekte mit regional deutlich unterschiedlicher Gewichtung aus. Das resultierende Gesamtbild über die Mittelspannungsnetze zeigt sich daher sehr heterogen (vergleiche Abbildung 63).

Jeweils etwa die Hälfte der betrachteten Netze wird bis 2034 einspeisungs- bzw. verbrauchsdominiert sein. Abhängig von den jeweiligen Energieszenario-Ausprägungen kann in einzelnen Netzen die Versorgungsaufgabe dabei deutlich schwanken und auch in der Grundcharakteristik zwischen einspeisungs- bzw. verbrauchsdominiert wechseln

Netzausbaubedarf bei Anwendung innovativer Maßnahmen

Die Mittelspannungsnetze sind im Vergleich zu den Hochspannungsnetzen durch noch weiter differenzierte, zukünftig veränderte Versorgungsaufgaben charakterisiert. Die innovativen Maßnahmen werden in diesen verschiedenen Netzen technologie- bzw. verfahrensbedingt unterschiedliche Wirkung zur Entlastung der Netze erzielen.

Um die spezifische Wirkweise der innovativen Maßnahmen in den jeweiligen Netzsituationen zu charakterisieren, werden nachfolgend zuerst die in der Verteilnetzstudie durchgeführten Netzplanungen für beispielhafte Netze mit repräsentativen Netzsituationen vorgestellt.

Da auch im fachlichen Austausch mit den beteiligten Netzbetreibern bestätigt wurde, dass häufig gebrauchte und an Typnetzen aufsetzende Klassifikationen als beispielsweise Stadt-, Vorstadt-, Dorf-, Land- u.a. -netze aufgrund der graduellen Übergänge für die berechneten Realnetze nicht repräsentativ sind, verwendet die Verteilnetzstudie die sich einstellende Befundsituation der Netze als Klassifikationskriterium. Dieses Kriterium erscheint auch für weiterführende Betrachtungen, wie das Ableiten von Handlungsempfehlungen und darauf aufbauenden Planungsgrundsätzen robust, insoweit die Wirkung der innovativen Maßnahmen in direktem Bezug zu elektrischen Anforderungen und nicht zu nur zu mittelbaren beschreibenden Eigenschaften der Netze gebracht werden.

Die Gesamtbewertung des Einsatzes der innovativen Maßnahmen bezogen auf die Menge aller Mittelspannungsnetze in Hessen wird anschließend ausgewiesen. Alle nachfolgenden Erläuterungen beziehen sich auf jeweils auf das mittlere Energieszenario für das Stützjahr 2034, jeweils berechnet für fünfzig probabilistische Energieszenario-Ausprägungen.

S.122 / 123 / 124

Strombegrenztes Netz (Netz 1)

Die spannungsbeeinflussenden Technologien bzw. Blindleistungsbereitstellungsstrategien werden in diesem Netz entsprechend der vorrangigen Befundlage ihre Wirkungen nicht entfalten können. Ebenso kann die Leistungskompoundierung auf den Transformatoren keine wesentliche Wirkung zur Entlastung der Leitungen erzielen.

Wirksamkeit können nur die innovativen Maßnahmen erzielen, welche die durch das Netz aufzunehmende Leistung reduzieren (vergleiche Abbildung 69). Dies sind in der betrachteten Maßnahmenauswahl primär die verschiedenen Formen der Spitzenkappung. Die in der Abbildung dargestellte Spitzenkappung beinhaltet auch die Anwendung der Spitzenkappung in der Niederspannung. Der Vorteil der Spitzenkappung ist hier durch eingesparten Netzausbau bewertet. Der gegebenenfalls für die Bewertung der gesamtwirtschaftlichen Vorteilhaftigkeit zusätzlich anzurechnende Wertersatz für abgeregelte Leistung ist nicht berücksichtigt. Dessen Auswirkungen sind im Kapitel 6.7 bei der erweiterten Bewertung der Spitzenkappung erläutert.

Durch die Spitzenkappung werden Überlastungen im Netz gesenkt. Als Folge treten die ebenso vorhandenen Spannungsprobleme deutlicher hervor und die Leistungskompoundierung kann weiteren Netzausbau einsparen.

Der netzdienliche Einsatz von Prosumer-Anwendungen zusätzlich zu Leistungskompoundierung und Spitzenkappung kann im Beispielnetz nur in geringem Umfang zur weiteren Reduktion des Netzausbaus beitragen, wie die Verschiebung der Verteilung und des Medians innerhalb der sonst gleichbleibenden Spannweite der Netzausbaukosten widerspiegelt. Dies sowie die umgekehrt ebenfalls eher vernachlässigbare Zusatzbelastung des betrachteten Netzes durch marktorientieren Einsatz der Prosumer-Anwendungen erklärt sich durch den im Verhältnis zur Einspeisung aus Erneuerbaren Energien nur geringen Leistungsbeitrag der Prosumer bezogen auf die Gesamtlast im betrachteten Netz.

S. 124. Spannungsbegrenztes Netz (Netz 2)

! Stimmt so nicht. Hier wird wahrscheinlich bereits jetzt vorsorglich ein Pflock eingetrieben, der die faktische Handlungs- und Gestaltungshoheit bei den VNB gegenüber den „Prosumern“ weiter zementieren soll !

Der Beweis folgt stehenden Fußes auf S. 125: Da die Spannungsgrenzwertverletzungen hauptsächlich durch Niederspannungseinspeisungen hervorgerufen werden, wirkt nur die cos ϕ = fixierte Blindleistungsbereitstellung.

Deshalb muss diese Behautung auch gleich noch mal wiederholt werden. Die VNB verstehen im gegensatz zur BnetzA und den ÜNB ihre Systeme und wissen, dass man Politiker sehr leicht täuschen kann.

Durch Einsatz der Leistungskompoundierung kann unter den betrachteten innovativen Maßnahmen die größte Kosteneinsparung erreicht werden. Eine zusätzliche dynamische Blindleistungsbereitstellung erzielt im betrachteten Netz keinen relevanten zusätzlichen Effekt.

Die Spitzenkappung kann den Netzausbau absehbar nur in geringem Umfang reduzieren.

Der Beitrag von netzdienlichen Prosumer-Anwendungen zusätzlich zu Leistungskompoundierung und Spitzenkappung fällt aufgrund ihrer niedrigen relativen Anteile an der Gesamtlast vernachlässigbar gering aus.

S. 126 S. 127 Netz mit Begrenzung im Lastfall (Netz 3)

Eine Reduktion des Netzausbaus kann durch Netzbetreiber mittels Einsatz von Leistungskompoundierung erreicht werden, da diese Maßnahme auch im Lastfall effektiv wirkt. Durch ein netzdienliches Verhalten von Prosumer-Anwendungen zusätzlich zu Leistungskompoundierung und Spitzenkappung lässt sich die Netzbelastung und der daraus resultierende Netzausbau in diesem betrachteten Netz wesentlich beeinflussen. Soweit die

Prosumer-Anwendungen zum netzdienlichen Einsatz aktiviert werden können, lässt sich durch diese Maßnahmenkombination die mit Abstand höchste Reduktion des Netzausbaubedarfs erreichen.

Sollten die Prosumer-Anwendungen bei angespannter Netzsituation allerdings synchron marktorientiert handeln, werden zusätzliche Netzüberlastungen verursacht, denen durch wesentliche Netzverstärkung, im Beispielnetz um nahezu 50% gegenüber dem Grundfall des konventionellen Netzausbaus erhöht, vorgebeugt werden müsste.

Bei der oben beschriebenen Priorisierung der innovativen Maßnahmen muss darauf hingewiesen werden, dass diese sich aufgrund der Eigenschaften der Mittelspannungsnetze in Verbindung mit der Verteilung der anhand der Energieszenarien prognostizierten Netzsituationen einstellt, sich also aus der Summierung der optimalen individuellen Netzplanungen ergibt. Die zuvor ausgeführten Beispielnetze illustrieren die verschiedene Wirksamkeit der innovativen Maßnahmen und die nur fallweise erzielbaren, teilweise auch deutlich höheren Netzkostenminderungen, die sich nicht über alle Netze verallgemeinern lassen. Insbesondere bei den mit (potenziellem) Wertersatz für abgeregelte Energie verbundenen Maßnahmen der Spitzenkappung und des netzdienlichen Einsatzes von Prosumer-Anwendungen bleibt eine differenzierte Betrachtung in den Einzelnetzen erforderlich.

6.4 Verteilnetze der Niederspannungsebenen

6.4.1 Veränderte Versorgungsaufgabe

Entsprechend der angewendeten Energieszenarien wird ein hoher Zubau neuer Verbraucher erwartet, der die Effizienzsteigerungen bei den konventionellen Verbrauchern weitgehend aufwiegt, die Netzbelastungen aber durch veränderte Gleichzeitigkeiten teils deutlich beeinflussen kann. Insbesondere die effektive Anschlussleistung der Ladeinfrastruktur für E-Kfz wird in der Niederspannung wesentlich zunehmen. Zwischen den Stützjahren 2024 und 2034 wird entsprechend der Energieszenarioannahmen eine Verzehnfachung der betreffenden Anschlussleistung erfolgen.

Ebenso erfolgt ein hoher Zubau an Einspeisung aus Erneuerbaren Energieerzeugungsanlagen (Photovoltaik-Aufdachanlagen), der zusammen mit den verbrauchsseitigen Veränderungen eine erhebliche Anpassung der Versorgungsaufgaben in den betrachteten Niederspannungsnetzen verursachen wird.

Die Abbildung 75 stellt die durchschnittlich zugebauten Anschlussleistungen je Energieszenario und Stützjahr für Photovoltaik-Aufdachanlagen, E-Kfz und Wärmepumpen dar. Ein Boxplot entspricht dabei der Bandbreite über alle ermittelten Zubauverteilungen. Für den Photovoltaik-Zubau ist die effektiv eingespeiste Leistung, für die Zunahme an E-Kfz und Wärmepumpen ist der effektive Leistungsbezug, d.h. die jeweilige Leistung unter Berücksichtigung der angewendeten Gleichzeitigkeitsfaktoren, ausgewiesen.

S. 130

Die zusätzliche Einspeise- und Verbraucherleistung in den betrachteten Niederspannungsnetzen wird zunehmend zu strom- oder spannungsbedingten bzw. auch kombinierten Grenzwertverletzungen führen.

S. 135

Die Differenzen zwischen den Energieszenarien folgen dabei dem beschleunigten Zubau der Photovoltaik-Aufdachanlagen und E-Kfz-Ladesäulen, welcher den Energieszenarioannahmen zugrunde liegt. Zugleich vergrößern sich die Varianzen innerhalb der Netzausbaukosten vom unteren bis zum oberen Energieszenario jedes Stützjahrs verbunden mit der wachsenden Unsicherheit über die konkreten Standorte der neuen Einspeiser und Verbraucher und dem davon abhängigen Netzausbaubedarf deutlicher als auf anderen Netzebenen, weil die betreffenden Leistungen direkt an die Niederspannungsnetze angeschlossen sind und keine Glättung durch Aggregation über mehrere Netze erfolgt.

Die zur Verstärkung der Niederspannungsnetze erforderlichen Netzausbaumaßnahmen und Netzausbaukosten verteilen sich auf die Ebenen von Niederspannung (Netzebene 7), Transformationsebene (Netzebene 6) und auch Mittelspannung (Netzebene 5, vergleiche Abbildung 80). Zum Stützjahr 2024 verteilen sich die ermittelten Ausbaukosten nahezu gleich auf die Niederspannungs- und Transformationsebene. Die Netzausbaukosten der Transformationsebene werden dabei durch Transformatortausch bei auftretenden Transformatorüberlastungen und aufgrund von erforderlich werdenden Neugründungen von Ortsnetzstationen verursacht.

Die Neugründung einer Ortsnetzstation ist beispielsweise erforderlich, wenn ein Austausch des existierenden Ortsnetztransformators nicht mehr ausreichend ist, um die erwarteten Transformatorüberlastungen zu vermeiden. Wenn Ortsnetzstationen neu gegründet werden, müssen auch auf der Mittelspannungsseite Netzausbaumaßnahmen zum Anschluss der Ortsnetzstationen durchgeführt werden. Damit werden durch den in der Niederspannung verursachten Netzausbau auch Netzausbaumaßnahmen und -kosten in der Mittelspannungsebene induziert. Diese Anschlusskosten werden hier und in der späteren Hochrechnung auf den gesamten in Hessen erwarteten Verteilnetzausbau sachgerecht der Mittelspannungsebene zugeordnet.

S. 138

Die Kombination aus Photovoltaik-Spitzenkappung, spannungsabhängiger Blindleistungsbereitstellung und Einsatz von regelbaren Ortsnetztransformatoren erweist sich als (technisch) besonders effektiv. Die nach Einsatz dieser Kombination der innovativen Maßnahmen verbleibenden Netzausbaukosten betragen nur noch etwa 75% der Kosten des rein konventionellen Netzausbaus in den entsprechend geeigneten Netzen

Die Spitzenkappung für sich allein genommen kann insbesondere in den Netzen mit Transformator- und Leitungsüberlastungen eine Wirkung auf die Reduktion des Netzausbaus mit sich bringen, wobei die gesamtwirtschaftliche Bewertung dieser Maßnahme netzspezifisch unter Anrechnung des jeweils konkreten Wertersatzes notwendig wird. Bei der hier für die Photovoltaik-Aufdachanlagen zur betrieblichen Umsetzung der Spitzenkappung unterstellten überwiegenden statischen Leistungsbegrenzung kann jedoch angenommen werden, dass sich die Vorteilhaftigkeit dieser Maßnahmenkombination auch bei gesamtwirtschaftlicher Bewertung bestätigt, da für abgeregelte Energie zu leistender Wertersatz gesetzlich bereits als erfüllt gilt (vergleiche dazu Kapitel 6.7).

…Er ist in der Einspeisevergütung bereits enthalten…

Die dynamische Blindleistungsbereitstellung mittels Q(U)-Regelung kann in den Niederspannungsnetzen gleichfalls „standardmäßig“ eingesetzt werden, da sie unter den geltenden Rahmenbedingungen mit keinen unmittelbaren netzbezogenen Kosten verbunden ist. In den Netzen, in denen lediglich Spannungsgrenzwertverletzungen auftreten, können allerdings auch statische Blindleistungsbereitstellungsstrategien hinreichend sein.

Falls gravierende Spannungsprobleme durch die Q(U)-Regelung nicht beseitigt werden können, können zusätzlich regelbare Ortsnetztransformatoren eingesetzt werden. Deren Einsatz ist jedoch unter den Kostenannahmen der Verteilnetzstudie mit wesentlichen Investitionskosten verbunden, so dass er in jedem Fall nachrangig zur Blindleistungsbereitstellung realisiert wird. Infolge der verhältnismäßig hohen Investitionskosten kann der Einsatz von regelbaren Ortsnetztransformatoren nur in vierzehn Prozent der Netze tatsächlich wirtschaftlich vorteilhaft werden. In Kombination mit der Q(U)-Regelung und Spitzenkappung reduziert sich der Anteil des wirtschaftlichen Einsatzes von regelbaren Ortsnetztransformatoren auf rund 7% der Netze

Durch die Kombination verschiedener Technologien können etwa 20% der Netzausbaukosten im Vergleich zu konventionellem Netzausbau eingespart werden.

S. 140

Sehr große Auswirkungen auf den erwarteten Netzausbau und die resultierenden Netzausbaukosten hat das unterschiedlich motivierte Verhalten von Prosumer-Anwendungen in der Niederspannungsebene. Die Abbildung 84 stellt diese Auswirkungen des netzdienlichen und des marktorientierten Einsatzes von Prosumer-Anwendungen dar. Unter den auch für die anderen Netzebenen betrachteten Skalierungsfaktoren kann der netzdienliche Einsatz von Prosumer-Anwendungen rund 20% der Netzausbaukosten gegenüber dem rein konventionellen Netzausbau einsparen. Ein überwiegend marktorientierter Einsatz der Prosumer-Anwendungen würde dagegen Mehrkosten von rund 30% gegenüber dem rein konventionellen Netzausbau bedingen.

Aufgrund der hohen Wirkung in der Niederspannung werden als zusätzliche Sensitivitäten jeweils eine 20%ige Erhöhung und Verringerung der verwendeten Skalierungsfaktoren geprüft. D.h. die netzdienliche bzw. marktorientierte Wirkung des Prosumerverhaltens wird jeweils einmal verstärkt und einmal abgeschwächt, um dessen mögliche Bandbreite besser abzubilden. Durch entsprechend verstärktes netzdienliches Verhalten von Prosumer-Anwendungen lassen sich im Vergleich zum rein konventionellen Netzausbau im Median 10% bis 40% der Netzausbaukosten einsparen, soweit die netzdienliche Aktivierung der Prosumer gewährleistet ist.

Ein noch weiter synchronisiertes marktorientiertesVerhalten von Prosumer-Anwendungen wird dagegen die zu erwartenden Netzausbaukosten um bis zu 60% treiben.

Mit diesem beidseitigen Potenzial auf den Netzausbaubedarf und die Netzausbaukosten über alle Netzebenen, jedoch mit besonderem Schwerpunkt in den Niederspannungsnetzen, wird das zukünftige tatsächliche Verhalten der Prosumer-Anwendungen an Bedeutung gewinnen und in seiner Relevanz auf die Netzauslegung andere Entwicklungen in den Netzen überwiegen.

6.4.3 Auswirkungen von Batteriespeichern für Niederspannungsnetze

(Netzspeicher)

Der netzdienliche Betrieb von Batteriespeichern in Niederspannungsnetzen bietet eine Möglichkeit, lokale Überlastungen durch Einspeisungsspitzen Erneuerbarer Erzeugungsanlagen, d.h. primär der Photovoltaik-Aufdachanlagen, zu vermeiden. Der Betrieb entsprechender Speicher kann folglich eine zusätzliche planerische Option werden, Netzüberlastungen nachhaltig zu vermeiden und den daraus folgenden Netzausbau zu reduzieren.

Was heißt hier kann? Das ist ein denknotwendiges Muss!

Für einen solchen Betrieb von Speichern sind grundsätzlich zwei Fälle denkbar.

Einerseits können die Speicher durch Netzkunden betrieben und deren netzdienliches (bzw. Flexibilitäts-) Potenzial durch die Netzkunden an die Netzbetreiber bereitgestellt werden. Die hierbei zu erwartende netz- und netzausbauentlastende Wirkung ist in den vorausgegangenen Analysen als innovative Maßnahme (netzdienlicher Einsatz von Prosumer-Anwendungen) grundsätzlich aufgezeigt worden.

Andererseits könnte unter der Voraussetzung einer entsprechenden Weiterentwicklung der Regulierung auch die Möglichkeit eröffnet werden, dass Netzbetreiber selbst zu Eigentümern und Betreibern von Speichern werden. (vergleiche z.B. Entwurf EU-Elektrizitätsbinnenmarkt Richtlinie, Art. 36 II [44]).

Wäre sinnvoll, wenn beide – nicht einerseits und andererseits – anbieten und investieren dürften. Sowohl „private Prosumer“ als auch Kapitalgesellschaften. Unerwünscht weil ohne Mehrwert sind umfassende Geschäftsmodelle großer Konzerne mit Roll-Out auf dem Rücken der privaten Immobilienbesitzer.

Unter den Entflechtungsvorgaben der Energiewirtschaft würden solche Speicher (nachfolgend Netzspeicher) zumindest wie Netzbetriebsmittel behandelt und netzgeführt eingesetzt werden können. Dementsprechend ließen sie sich als zusätzliche, von der Mitwirkung anderer Marktteilnehmer unabhängige, innovative Maßnahme in der Netzplanung berücksichtigen. Dieser Fall wird im Weiteren näher betrachtet.

S. 141 / 142

Damit durch den Einsatz eines Netzspeichers zu jedem Zeitpunkt die Einhaltung der Strom- und Spannungsgrenzen gewährleistet werden kann, muss dieser in Bezug auf seine Nennleistung und Kapazität jeweils für den schlimmsten anzunehmenden Fall im konkreten Netz dimensioniert werden.

Dito!

Dies wird nachfolgend bei der Modellierung berücksichtigt.

Der Speicher wird dabei als statische Last im Einspeisefall modelliert und die Speicherleistung für diesen Lastfall ausgelegt. Die benötigte Speicherkapazität wird auf Basis eines zeitreihenbasierten Verfahrens nach [45] ermittelt.

Das würde ich sehr gern sehen…

Ob Netzspeicher eine wirtschaftlich sinnvolle Alternative zum Netzausbau sein können, hängt überwiegend von der weiteren Entwicklung der Kosten geeigneter Batterien ab, da die energetische Speicherkapazität der mit Abstand größte Kostenfaktor des Netzspeichereinsatzes ist.

Richtig! Eine massive, verbindliche Ausbauankündigung eröffnet die Möglichkeit, einen geeigneten Zielpreis vorzugeben.

Der Einsatz von Netzspeichern zur Behebung von Spannungsbandverletzungen wird verglichen mit in den vorgelagerten Auswirkungsanalysen für die Niederspannung als wirksam identifizierten Maßnahmen:

 (Rein) konventioneller Netzausbau,

 Photovoltaik-Spitzenkappung auf 70% der Anlagen-Nennleistung,

 Statische Blindleistungsbereitstellung durch Photovoltaik-Anlagen, cos ϕ = 0,9,

 Einsatz von regelbaren Ortsnetztransformatoren

Für strombedingte Leitungs- oder Transformatorenüberlastungen werden Netzspeicher jeweils mit dem konventionellen Netzausbau verglichen, der hierfür die wahrscheinlichste Maßnahme in der Niederspannung ist. Die Kosten werden annuitätisch abgebildet, um die unterschiedlichen Zusammensetzungen der Betriebskosten und die verschiedenen Lebensdauern der jeweiligen Betriebsmittel vergleichen zu können. Hierbei werden zusätzlich folgende Sensitivitäten berücksichtigt:

Wirtschaftliche Nutzungsdauer der Netzspeicher: 10 bis 20 Jahre.

Netter Versuch, aber zeugt von der Ahnungslosigkeit der Autoren beim Thema. Die Lebensdauer eines Speichers hängt ganz wesentlich von der Intensität seiner Belastung ab. Hält man sich innerhalb enger Grenzen bezogen auf die Kapazität, „lebt“ ein elektrochemischer Speicher potentiell ewig. Was aber den Investitionsbedarf dramatisch erhöht. Umgekehrt hält der Speicher nicht lange, wenn man ihn permanent an seine Grenzen fordert. Dann zahlt man über die Zeit doppelt bis dreifach.

Erstere Variante ist die klügere, weil sie die Möglichkeit zur Preisreduktion über die Masse eröffnet. Solange nahezu alle abwarten wird es ewig dauern.

 Wirtschaftliche Nutzungsdauer von Kabeln in der Niederspannung: 40 bis 50 Jahre,

 Betriebskosten der Netzspeicher: 3 bis 7 Prozent der Investitionskosten pro Jahr,

 Leistungsabhängige Kosten der Netzspeicher: 100 bis 200 EUR/kW.

Letztere Aussage ist irrelevant, respektive irreführend da Speicher ausnahmslos nach kWh Kapazität verkauft werden und die Leistung einfach dabei ist. Man bestimmt die benötigte Größe über die Relation kW zu kWh. Es gibt bereits unzählige Veröffentlichungen von „Experten“, die dann beide Kostenansätze additiv ansetzen und auf horrende Preise kommen. Daher auch der folgende unsinnige Satz:

Die genannten Kosten beziehen sich grundsätzlich auf Systemkosten und nicht die auf die alleinigen Kosten der Batteriezellen. Die gegenwärtigen Kosten für Speicherkapazität liegen im Bereich von 400 bis 700 EUR/kWh [46]. Bei Annahme dieser Kosten kann der Einsatz eines Netzspeichers im Vergleich zu anderen Maßnahmen in keinem der geprüften Anwendungsfälle wirtschaftlich sein.

Auch das bedeutet nur, dass offenbar die falschen Fälle geprüft wurden.

Für die nächsten Jahre wird erwartet, dass die Kosten für Speicherkapazität unter 200 EUR/kWh fallen können [47]. Unter Annahme dieser Kosten, wäre bezogen auf die betrachteten Einsatzfälle ein im Vergleich zum konventionellen Netzausbau wirtschaftlicher

Was durch eine massive Ausschreibung einiger weniger großer Projekte beschleunigt werden kann.

Der Einsatz zur Spannungshaltung ist tendenziell möglich. Werden jedoch zusätzlich innovative Technologien eingesetzt, wären damit wirtschaftlichere Möglichkeiten des Netzausbaus gegenüber dem Einsatz von Netzspeichern gegeben. Auch bei weiterer Kostensenkung bliebe der wirtschaftliche Einsatz von Netzspeichern vorerst fraglich.

Eine Behauptung, die sich sofort um 180° drehen würde, wenn es eine starke und standsichere politische Willensbekundung gäbe, loszulegen.

Insgesamt sind unter den gegebenen Annahmen die verfügbaren Alternativen dem Einsatz von Netzspeichern vorzuziehen. Eine Neubewertung kann sich allerdings ergeben, wenn abweichend von der gegenwärtigen und der erwarteten Regulierung die gespeicherte Energie aktiv vermarktet oder zur Substitution von Marktprodukten eingesetzt werden dürfte. Die durch solche Vermarktung erzielten Erlöse könnten abzüglich neuer

Prozesskosten die Wirtschaftlichkeit der Netzspeicher verbessern.

Siehe da!

S. 153 Detailbetrachtung und gesamtwirtschaftliche Bewertung der Spitzenkappung

Die Spitzenkappung erweist sich in den zuvor ausgeführten Bewertungen in allen Netzebenen als überwiegend vorteilhafte Maßnahme. Die Bewertung erfolgt dabei allein unter der Netzausbauperspektive und unter der Annahme, dass die Einspeisemanagement-Maßnahmen, die abhängig von der Steuerbarkeit der Erneuerbaren Energieerzeugungsanlagen zur betrieblichen Umsetzung der Spitzenkappung eingesetzt werden, ausgenommen zusätzlicher Prozesskosten für die Netzbetreiber als im Sinne der Anreizregulierung dauerhaft nicht-beeinflussbare Kosten betriebswirtschaftlich nahezu neutral bleiben.

Die zuvor ausgewiesene Vorteilhaftigkeit ergibt sich aus den Ersparnissen des nach Spitzenkappung verbleibenden verminderten Netzausbaus gegenüber dem Netzausbau, der erforderlich wäre, wenn die gesamte in den Energieszenario-Ausprägungen prognostizierte Einspeisung aus Erneuerbaren Energieerzeugungsanlagen von den Netzen aufgenommen werden müsste.

S.154

Der Vorteil der Spitzenkappung ist jedoch mit der Einschränkung verbunden, dass bis zu 3% der mittels Erneuerbaren Energieerzeugungsanlagen generierten Energie abgeregelt und somit dem Energiesystem „entzogen“ werden. Für diese abgeregelte Energie ist durch die Netzbetreiber ein Wertersatz zu leisten (EEG § 11 II), der anschließend über die Netzentgelte sozialisiert wird. Dieser Wertersatz muss im Rahmen einer gesamtwirtschaftlichen Kostenbewertung der Spitzenkappung berücksichtigt werden, um die Auswirkungen der Spitzenkappung mit denen von anderen Maßnahmen aus Perspektive der Netznutzer vergleichen zu können.

Angelehnt an die Planungshinweise des technischen Regelsetzers VDE FNN [36] erfolgt die detaillierte Untersuchung der Spitzenkappung im Grundfall durch Anrechnung der Leistungsbeschränkungen auf siebzig Prozent der Anlagen-Nennleistung für Photovoltaik-Anlagen und 87% für Windenergieanlagen, mit welchen im Mittel die zulässige Spitzenkappung von 3% der Jahreseinspeisung erzielbar sein soll. Exemplarische Untersuchungen an Einspeisezeitreihen zeigen aber, dass eine Begrenzung von Photovoltaik-Anlagen auf 70% der Anlagen-Nennleistung eine abgeregelte Energie in der Bandbreite von 0% – 6% (Mittelwert 3%) erreicht und die Begrenzung von Windenergie-Anlagen auf 87% eine abgeregelte Energie in der Bandbreite von 0% – 3% (gewichteter Mittelwert 1%) bedeuten.

Hinzu kommt vor allem in der Niederspannung bei Photovoltaik-Anlagen der Einfluss des zeitgleichen Verbrauchs (Eigenverbrauch) und des zunehmenden Speichereinsatzes, welcher die tatsächlich abgeregelte Energie deutlich reduzieren kann. Aus diesen Gründen werden in den folgenden Untersuchungen nicht nur 3%, sondern auch verringerte Beträge für abgeregelte Energie betrachtet und die Leistungsbegrenzung für die Anlagen variiert.

S.155 / 156

Statische Leistungsbegrenzung

Das Erneuerbare Energien Gesetz fordert grundsätzlich die Ertüchtigung aller Erneuerbaren Energieerzeugungsanlagen, um die Einspeisung in die Netze auf Anforderung durch Netzbetreiber reduzieren zu können. Für Betreiber von Photovoltaik-Anlagen mit installierter Anlagenleistung bis zu 30 kW stellt das Gesetz alternativ zur Auswahl, die Einspeisung statisch auf siebzig Prozent der Anlagenleistung zu begrenzen (EEG §9 II S. 2), um die Mehrkosten der Steuerungstechnik zu vermeiden. Der Beitrag dieser statisch einspeisungsbegrenzten Anlagen zur Reduktion des Netzausbaus gilt als bereits durch die realisierten Einsparungen an den Anlagen und deren Betriebsprozessen als vergütet.

Durch den nur geringen Anteil von Photovoltaik-Anlagen mit installierter Leistung über 30 kW in den Niederspannungsnetzen kann sich, unter Annahme der Fortgeltung dieser gesetzlichen Regelung, die verschiedene Inanspruchnahme der Wahlmöglichkeit in diesen Netzen deutlich auswirken.

Sofern für die Niederspannungsnetze angenommen werden kann, dass auch zukünftig die statische Leistungsbegrenzung deutlich überwiegt, würde die erstattungspflichtig abgeregelte Energie insgesamt minimiert. Der verbleibende Wertersatz wäre vernachlässigbar, so dass die Spitzenkappung hier auch bei gesamtwirtschaftlicher Bewertung nahezu dieselben Vorteile wie bei der rein auf die Netzausbaueinsparungen bezogenen Bewertung ausweisen könnte (Abbildung 94, Boxplot „0% abg. Energie“).

Unter dieser Prämisse wäre eine pauschale Spitzenkappung in den Niederspannungsnetzen denkbar, die sich bei einem zukünftigen Überangebot von Erzeugung aus Erneuerbaren Energien nur eher gering auf die Energiesystemeffizienz niederschlagen würde. Das betreffende Einsparungspotenzial für den Netzausbau wäre verbindlich und könnte folglich in den Netzplanungen berücksichtigt werden.

Wenn aufgrund der erwarteten Kostenentwicklung für Informations- und Kommunikationstechnik oder durch den Smart Meter Rollout zukünftig vermehrt Anlagen beobacht- und steuerbar werden, erhöht sich der Anteil der erstattungspflichtigen abgeregelten Energie. Abhängig von der Höhe dieses Anteils reduziert sich in der Niederspannung der Vorteil der Spitzenkappung gegenüber dem konventionellen Netzausbau bei 1% erstattungspflichtig abgeregelter Energie auf nur noch 4%. Würde der volle Wert der zulässigen 3% an abgeregelter Energie erstattet werden müssen, entstünde daraus ein gesamtwirtschaftlicher Nachteil, bei dem 13% Mehrkosten gegenüber dem konventionellen Netzausbau einträten.

S. 157

Anlagenleistungsbegrenzung und selektiver Einsatz

Potenziell hohe Auswirkungen hat ebenfalls die angewendete Anlagenleistungsbegrenzung, mit der die Spitzenkappung realisiert wird. In den Annahmen des Grundfalls werden die für die Niederspannung relevanten Photovoltaik-Anlagen auf 70% ihrer Anlagen-Nennleistung begrenzt. Möglich sind allerdings auch davon abweichende Leistungsbegrenzungen, wie sie auch beispielsweise gegenwärtig in den Förderbedingungen für speichergekoppelte Photovoltaik-Anlagen vorgesehen sind [48][49].

Um eine größere Entlastung der Netze zu erzielen, könnten die Erneuerbaren Energieerzeugungsanlagen stärker als in den Standardannahmen vorgesehen abgeregelt werden.

Dazu müßten diese Netze erst mal nachweislich durch RES überlastet werden. Was a priori eigentlich nicht sein kann, wenn der Leistungsanschluss des Gebäudes, welches die PV trägt, über dem der PV liegt. (Nun besteht die Wahrheit aber darin, dass ausnahmslos alle Gebäude mit weit überdimensionierten Anschlüssen versorgt sind. Macht ja nichts, der Kunde zahlt ja). Aber der Ansatz ist im Prinzip vernünftig und deutet in die richtige Richtung. Konkret heißt das, die „Abregelung“ sollte grundsätzlich durch speichergekoppelte PV entfallen, bei der die PV DC-seitig an den Speicher gekoppelt ist und nichts direkt einspeist. Dementsprechend sollte in diesem Fall der Speicher die Bezugsgröße für Vergütung und EEG-Eigenverbauchsumlage sein. In der Prayxis: Eine 20 kW-PV-Anlage wird an einen Speicher mit max. 9,9 kW Einspeiseleistung gekoppelt. Das System gilt im EEG als <10 kW-Anlage. Der Eigentümer kann die Leistung seines Speichers dem Netzbetreiber anbieten, wenn er will. Das wäre mal ein echter Fortschritt.

Eine Leistungsbegrenzung auf 60% der Anlagennennleistung würde anhand exemplarischer Einspeisezeitreihen von Photovoltaik-Anlagen die abgeregelte Energie auf 5% bis 11% erhöhen; die Leistungsbegrenzung auf 50% der Anlagen-Nennleistung auf 11% bis 18%. Der zu leistende Wertersatz wächst dann proportional zur abgeregelten Energie und verändert die gesamtwirtschaftliche Bewertung entsprechend zu Ungunsten der Spitzenkappung, weshalb keine bessere Bewertung für eine flächige Spitzenkappung als in den vorausgehenden Betrachtungen erzielt werden kann (vergleiche Abbildung 95 und Abbildung 96).

S. 158

Die flächige Umsetzung der Spitzenkappung wäre mit diesen Leistungsbegrenzungen unter der gegebenen Regulierung selbst dann nicht zulässig, wenn nach weiterem umfangreichem Zubau an Erneuerbaren Energieerzeugungsanlagen die bereits früher diskutierte, auf 5% der Jahresenergie erhöhte, Bemessungsgrenze [50] für abgeregelte Energie eingesetzt würde. Wenn dennoch stärkere Leistungsbegrenzungen vorgesehen werden, muss auch bei erhöhten Bemessungsgrenzen folglich der Einsatz der Spitzenkappung auf die Netze beschränkt werden, die durch Betriebsmittelüberlastungen gekennzeichnet sind.

Bei einem solchen selektiven Einsatz der Spitzenkappung lässt sich der Netzausbau in den betreffenden Niederspannungsnetzen im Vergleich zu den vorangegangenen Betrachtungen zusätzlich reduzieren. Die zusätzlichen Einsparungen sind dabei so hoch, dass auch bei voller Anrechnung des Wertersatzes ein gesamtwirtschaftlicher Vorteil erzielt wird.

Bei der Leistungsbegrenzung auf 60% des Anlagen-Nennwerts beträgt dieser Vorteil rund 4% gegenüber dem konventionellen Netzausbau (vergleiche Abbildung 95); bei Leistungsbegrenzung auf 50% verbleibt ein gesamtwirtschaftlicher Vorteil von 1%(vergleiche Abbildung 96), jeweils unter Ansatz der mittleren abgeregelten Energie. Die Bewertung verbessert sich deutlich unter der Annahme sinkender Erstattungskostensätze bzw. der zuvor geprüften Annahme, dass der überwiegende Anteil der Anlagen statisch leistungsbegrenzt wäre.

Das genannte Systemmodell der DC-Kopplung kostet nichts ausser die private Investitionin denSpeicher und spart viel Netzausbaukosten, da so ziemlich jede Leistung damit um gut 70% gekappt werden kann.

Speichergekoppelte Photovoltaik-Anlagen

In veränderter Weise bildet sich gesamtwirtschaftlich die Planungssituation bei vermehrtem Zubau von Photovoltaik-Anlagen mit gekoppelten lokalen Speichern ab. Für diese ist in den gegenwärtigen Förderbedingungen bereits eine Leistungsbegrenzung auf 50% der installierten Leistung der Photovoltaik-Anlage vorgesehen [48], welche ohne Erstattung des Wertersatzes für die abgeregelte Energie vorgenommen werden kann. Der betreffende Wertersatz an die Anlagenbetreiber gilt durch die Nutzung der in die lokalen

Speicher umgeleiteten Energie und die anderweitigen Vorteile aus der Förderung von lokalen Speichern als erbracht.

Schade, dass hier keine genauer Betrachtung erfolgt. Womöglich wäre das Ergebnis nicht im Sinne der VNB.

S. 159

In der gesamtwirtschaftlichen Bewertung bilden sich speichergekoppelte Photovoltaik-Anlagen sowohl in der anrechenbaren Leistungsbegrenzung als auch in veränderter abgeregelter Energie ab. Bereits ein anteiliger Zubau von speichergekoppelten Photovoltaik-Anlagen kann bei den derzeitigen Förderbedingungen dazu beitragen, die gesamtwirtschaftliche Bewertung der Spitzenkappung wesentlich zu verbessern. Wie die Abbildung 97 zeigt, kann Spitzenkappung im optimalen Fall, in dem alle Photovoltaik-Anlagen mit Speichern gekoppelt sind, zur Reduktion der Kosten gegenüber dem konventionellen Netzausbau um rund ein Viertel führen.

Sofern sich die Rahmenbedingungen verändern und Wertersatz für einen Anteil der abgeregelten Energie geleistet werden muss, kann sich der gesamtwirtschaftliche Vorteil auch für speichergekoppelte Photovoltaik-Anlagen in einen Nachteil umkehren, wenn die Spitzenkappung nicht selektiv umgesetzt wird.

S. 167

Gleichfalls bleibt die Spitzenkappung innerhalb der Mittelspannungsebene relevant als

Überbrückungsmaßnahme, um Netzausbau mit dem Zubau von Erneuerbaren Erzeugungsanlagen verbessert zu koordinieren. Die bereits in der Niederspannung diskutierten von Speichersystemen können vergleichbar auch in den höheren Netzebenen zukünftig realisiert werden. Eine Zwischenspeicherung von Einspeisespitzen könnte den Wertansatz preislich und energetisch reduzieren.

Der Einsatz von Speichern an den Schnitstellen NS/MS und MS/HS würde diesen Vorteil sooder so mit sich bringen und enormes weiteres Potential freisetzen.

Netzebenenübergreifende Betrachtung der bis zur Hochspannungsebene umgesetzten Spitzenkappung

Der flächige Einsatz von Spitzenkappung in der Hoch- und Umspannebene kann in den betrachteten Realnetzen eine Einsparung für den Netzausbau in Höhe von 1,6% gegenüber dem konventionellen Netzausbau erzielen. Eine kumulative Wirkung wird damit in den Verteilnetzen nicht erzielt. Es besteht jedoch die Möglichkeit, dass eine positive Wirkung für die Übertragungsnetze realisiert werden kann, deren Bewertung allerdings außerhalb des Rahmens der Verteilnetzstudie liegt und für die vermehrt auch die Wechselwirkungen zu Anforderungen der Systemführung geprüft werden müssten.

Weil die Abregelung von Erneuerbaren Energieerzeugungsanlagen der Leistungsklassen, die in der Umspannungsebene angeschlossen sind, aufgrund ihrer Steuerbarkeit notwendig mit der Erstattung von Wertersatz einhergeht, werden die geringen eingesparten Netzausbaukosten unter den angenommenen Erstattungskostensätzen sicher durch den Wertersatz überkompensiert (vergleiche Abbildung 103). Ein gesamtwirtschaftlicher Vorteil durch flächige Spitzenkappung in der Hochspannung bleibt aufgrund der geringen Einsparungen an Netzaubaukosten auch bei marginalisierten Erstattungskostensätzen und Umsetzung von dynamischer Spitzenkappung kaum erzielbar.

S. 168

Allerdings kann der zuvor am Beispiel der Niederspannungsnetze erläuterte selektive Einsatz der Spitzenkappung abhängig von den konkreten Netzen und der Einspeisesituation weiterhin vorteilhaft bleiben. Gleichfalls bleibt die Spitzenkappung innerhalb der Hochspannungsebene relevant als Überbrückungsmaßnahme, um Netzausbau mit dem Zubau von Erneuerbaren Erzeugungsanlagen verbessert zu koordinieren.

S. 169

6.7.5 Rückwirkungen auf die Übertragungsnetze

Die zwischen den Verteilnetzen und dem Übertragungsnetz möglichen Wechselwirkungen einer im operativen Betrieb der Netze mittels Einspeisemanagement umgesetzten Spitzenkappung und dem für die Systemführung als System- bzw. Netzsicherheitsmaßnahme relevanten Einspeisemanagement sind in vorangegangenen Bewertungen nicht abgebildet.

Das Einspeisemanagement stellt dabei eine wesentliche Netzsicherheitsmaßnahme dar, die überwiegend durch die Übertragungsnetzbetreiber und zunehmend auch durch die Betreiber von Verteilnetzen mit hohem Anteil an Einspeisung aus Erneuerbaren Energieerzeugungsanlagen beansprucht wird.

Wird das Einspeisemanagement in den unterlagerten Netzen bereits aufgrund der umfassenden Anwendung der Spitzenkappung zur Reduktion des Netzausbaubedarfs eingesetzt, kann dies zu verminderter Flexibilität im Abruf dieser Netzsicherheitsmaßnahme durch überlagerte Netzbetreiber führen. Die infolge der Spitzenkappung auf der eigenen Netzebene bereits abgerufenen Abregelungspotenziale sind dann nicht mehr verfügbar, um auf Anforderung als Netzsicherheitsmaßnahme an überlagerte Netzbetreiber bereitgestellt zu werden.

Diese mögliche Wechselwirkung kann zu erhöhtem Netzausbaubedarf in den überlagerten Netzen, insbesondere auch in den Übertragungsnetzen, führen. Es besteht zudem die Möglichkeit, dass in Situationen hoher Systemauslastung die konkreten Abregelungen in den Verteilnetzen in Hessen (Mitte/Süd-West) den engpassbehebenden Maßnahmen der Übertragungsnetzbetreiber (Einspeisungsreduktion in Nord-Ost, Einspeisungserhöhung in Süd-West) entgegenlaufen. Auch hieraus können erhöhte Anforderungen an den Ausbau der Übertragungsnetze folgen. Die Wechselwirkungen sollten in koordinieren Netzplanungen berücksichtigt werden.

S. 185

Durch die Netzbetreiber wird der Austausch von relevanten Randnetzdaten vielfach bereits praktiziert. In der Hochspannung ist der Datenaustausch mit den Übertragungsnetzbetreibern überwiegend bereits üblich und wird durch die europäische Regulierung zunehmend institutionalisiert. Dennoch unterliegt der Datenaustausch bisher vielfach lediglich bilateral vereinbarten Prozessen oder fallweiser Praxis, so dass er in unterschiedlicher Qualität erfolgt. Für unterlagerte Netze, soweit diese durch voneinander verschiedene Netzbetreiber betrieben werden, ist der Datenaustausch oftmals reduziert.

S. 194

(15) Lokale Netzspeicher in der Niederspannung vorerst nicht nutzen Mit dem Einsatz von lokalen Netzspeichern in den Niederspannungsnetzen, d.h. Batteriespeichern, die durch die Netzbetreiber wie andere Netzbetriebsmittel netzgeführt eingesetzt werden, werden oft hohe Erwartungen an deren Einspeisespitzen glättende und lastausgleichende Wirkung und davon abgeleitet auch an mögliche Einsparungen für den Netzausbau verknüpft. (Der Abruf netzdienlicher Beiträge von privaten Speichern anderer Marktteilnehmer wird in der Verteilnetzstudie unter netzdienlichen Prosumer-Anwendungen subsumiert und ist hiervon verschieden.)

Nett. Steht einfach so da ohne nachvollziehbare Begründung. Bei einigermaßen fleißigem Nachdenken sollte aber klar sein,dass die wesentliche Rolle lokaler Netzspeicher (NS/MS und MS/HS) in der effizienten Verknüpfung kleinteiliger Erzeugung mit der Verteilungsphilosophie des Übertragungnsetzes liegt und dass dieses Übertragungsnetz dadurch immens an seiner ohnhhin überbewerteten Bedeutungsschwere verlieren würde. Darüberhinaus entfielen ebenfalls etliche lukrative Geschäftsmodelle (und damit die wesentliche Existenz- und Machtbasis der VNB), vor allem das der Vermarktung des EEG-Stroms, für den diese aktuell nichts bezahlen.

S. 195

Die Verteilnetzstudie prüft daher losgelöst von noch offenen regulatorischen Fragestellungen des Speicherbetriebs durch Netzbetreiber mittels Zielpreisbestimmung die Vorteilhaftigkeit des absehbar möglichen Einsatzes [44] von lokalen Netzspeichern in der Niederspannung. Eine Erlöserzielung aus Vermarktung der gespeicherten Energie oder der Substitution des Bezugs von Marktprodukten durch den Netzbetreiber wird dabei aufgrund der entsprechenden Auslegung der Entflechtungsvorschriften ausgeschlossen.

Die Wirtschaftlichkeit des Einsatzes von lokalen Netzspeichern wird absehbar durch die Technologiekosten der Speichersysteme und deren Verhältnis zu den netzplanerischen Alternativen, d.h. relevanten konventionellen und innovativen Maßnahmen und deren Anwendungsfällen, bestimmt. Bei sonst auftretenden Spannungsgrenzwertverletzungen kann der Einsatz von lokalen Netzspeichern ab etwa einer Halbierung der Technologiekosten relativ zur Kostenbasis in 2015 gegenüber dem rein konventionellen Netzausbau wirtschaftlich werden. Er konkurriert dann aber mit weiterhin günstigeren innovativen Maßnahmen wie der Blindleistungsbereitstellung oder der Spitzenkappung. Für strombedingte Überlastungen wird ohne zusätzliche Erlöserzielung kein wirtschaftlicher Speichereinsatz erwartet.

Womit wir heute in 2018 zweifelsfrei an diesem Punkt angelangt sind. Auf was warten wir denn noch? Legen wir los.

Das Orangebuch der Energiepiraten – meine Sicht – Teil 7

Das Orangebuch der Energiepiraten – meine Sicht – Teil 7

6 Globaler Ausblick

– „Budgetansatz“ aus der Klimapolitik

– Wenn jeder auf der Welt so viel Energie verbraucht wie wir Deutschen in Zukunft, wird nicht mehr Energie benötigt, als heute erzeugt wird!!

– Genügend Rohstoffe für eine weltweite nachhaltige Energieerzeugung vorhanden?!

– Umbau des Weltwirtschaftssystems zu einem nachhaltigen kostet 2-3% des Weltbruttosozialprodukts, Förderung und indirekte Kosten der fossilen Stromerzeugung kosten 6,5 % des Weltbruttosozialprodukts- Studie des IWF 2015 (Vortrag D. Messner, DIE)

Energiesubventionen am Pranger:
http://www.faz.net/aktuell/wirtschaft/energiepolitik/subventionen-fuer-energie-hoeher-als-ausgaben-fuer-gesundheit-13601362.html
Die Länder der Welt subventionieren den Einsatz von Energie in diesem Jahr mit 5,3 Billionen Dollar. Das behauptet zumindest der Internationale Währungsfonds (IWF) in Washington. Das sei ein schockierendes Ergebnis, schreiben die Autoren dieser Studie. Die Summe entspricht 6,5 Prozent des globalen Bruttosozialprodukts und übersteigt damit die globalen Ausgaben für Gesundheit.

Eine marktwirtschaftlich adäquate Behandlung der Energieversorgung ist weltweit nach wie vor weit von der Realität entfernt.

Nahezu überall ist es nach wie vor Usus, die Bereitstellung von Energieträgern entweder massiv zu subventionieren oder – und das geschieht im Übermaß – von den Kosten zur Wiederinstandsetzung und zum Erhalt der Lebensgrundlagen durch nachhaltige Fehlbewirtschaftung freizustellen.

Jede Hausfrau, jeder kleine Kaufmann und jeder Landwirt weiss, dass er seine Grundlagen erhalten muss, seine Ressourcen schonen muss und seine Leistungskraft nicht über deren Kapazität hinaus strapazieren darf.

Eigentlich will jeder politisch Konservative Mensch – und die stellen weitaus die Mehrheit – seine Gegenwart sichern, seiner Familie einen vor allem sicheren Platz zum Leben bieten und seinen Nachkommen auch genau diese weitergeben. Trotzdem setzen gerade konservative Politiker weltweit nirgends eine diese Grundbedürfnisse gewährleistende Politik um.

Zumindest den Sonntags- und Parteitagsreden nach will so ziemlich jeder linke Politiker – egal ob Sozialdemokrat, Sozialist, Grüner oder Linker, Syriza oder Podemos, genau das auch. Der politische „Wettbewerb“ bezieht sich lediglich auf die Methode und die Ausgestaltung,

Von den angeblich Liberalen Politkern und Parteien erhält man dazu keine Haltung, was aber in erster Linie daran liegt, dass es keine liberalen Parteien mehr gibt und niemand mehr den politischen Liberalismus versteht und würdigt.

Betrachten wir die Themen Energieversorgung, volkswirtschaftlich zukunftsfähige Bewirtschaftung und Rentabilität und faire Teilhabe zusammen, können wir zwar weiterhin zulassen oder gar selbst dafür sorgen, alle möglichen Verknüpfungen mit Nebenaspekten unter verschiedenen ideologischen Sichtweisen zu einem kaum durchschaubaren Gewirr vermengen und den normalen Bürger, der schlicht weder Zeit noch Ressourcen hat, sich mit derart komplexen Zusammenhängen zu befassen, immer weiter davon wegtreiben, sich damit zu beschäftigen.

Doch eine zentrale Erkenntnis lässt sich rational. Objektiv und nüchtern über alle Meinungsverschiedenheiten hinweg feststellen:

Energie wird viel zu billig bewertet, gehandelt und in Ihrer Bedeutung zu geringgeschätzt.

Eine der grundlegenden Fehlsteuerungen im Denken liegt in der – auch auf anderen Politikfeldern – stets wiederkehrenden These, dass Strom, Benzin, Öl, Gas usw. zu teuer sind. Eines der dominantesten Kantinen- Büro- und Stammtischthemen ist immer wieder der Anstieg von Spritpreisen. Bei Heizöl und Strom ist das übliche Gejammer zwar nicht so groß – und die geringe Zahl an tatsächlich den Lieferanten wechselnden Verbraucher deutet eher darauf hin, dass diese Preise eigentlich belanglos sind – doch der Punkt ist, dass kein einziger Politiker den Mut hat, die weit verbreiteten Fehleinschätzungen, den vereinfachenden Irrglauben die Zusammenhänge klar, transparent und nachdrücklich öffentlich zu kommunizieren. Dabei wäre gerade das die Aufgabe eines wirklich fähigen Wirtschaftsministers.

Das Phänomen besteht weltweit. In Argentinien zum Beispiel wurde ein neuer Präsident gewählt, der die Subventionen für Strom, Gas und öffentlichen Verkehr massiv gekürzt hat, um Spielräume für sein Budget zu schaffen und der in der Folge mit massiven öffentlichen Protesten konfrontiert ist, da die Preise bis zu 600% gestiegen sind.

Das argentinische „Marktmodell“ für Strom ist zwar ein anderes als hier, aber einzelne Bestandteile zum Beispiel des Strompreises lassen sich sehr gut nebeneinanderstellen. Die wirtschaftlichen Grundlagen sind wie in Europa oder der BRD, denn für die primären Energieträger gelten Weltmarktpreise. Die Einkaufsbedingungen sind also gleich.

Nun kostet die KWh Strom in Argentinien zwischen 2 und 4 Eurocent – nach der Preisanpassung. Die Produktion jedoch kostet dort wie hier zwischen 1 ct/kWh für Wasserkraft und brutalen 15 – 25 ct/kWh für Atomkraft. Obwohl die Reaktoren alt sind. Warum? Weil sie von einem deutschen Unternehmen einst geliefert und mit gewaltigen, sehr teuren Schulden refinanziert werden. Auch dort werden keine Folgekosten eingepreist. Schlimmer noch: Man plant ein neues AKW und Europa lockt mit süßen Angeboten.

Wir brauchen uns nichts vormachen:
So lange kein weltweiter Konsens samt effektiver Durchsetzungsmethoden darüber besteht, dass
Energieträger und Erzeugung nicht weiter subventioniert werden dürfen
Sämtliche Folgekosten samt der Schuldentilgung für Altanlagen endlich vollständig eingepreist werden
Jedes Land ohne jeden Kompromiss den Mut aufbringt, die damit verbundenen Preiserhöhungen für jeden Energienutzer durchzusetzen und dafür nötigenfalls auf spezifische Steuereinnahmen zu verzichten
Die Handelssysteme für sämtliche Energieprodukte, Komponenten, Erzeuger und jede Art der zugehörigen Anlagentechnik fair, transparent und im Sinne der öffentlichen Daseinsvorsorge durch staatliche Garantien gesichert finanziert werden.
Solange diese strukturellen Herausforderungen nicht bewältigt werden, wird dieser Machtkampf der Partikularinteresen, kleinlichen Eifersüchteleien und Streitereien weitergehen und vor allem sich der Aspekt der Umweltfolgen genau so negativ weiterentwickeln wie bisher.
Das weitgehend undemokratische Amalgam der bisherigen Eliten, Wirtschaftsführer und etablierten Politiksysteme samt ihrer Besatzungen hat so gut wie nichts zum Positiven verändert und wird es auch nicht schaffen, da die Verzahnung mit Partikularinteressen zu eng ist und zu wenig Handlungsspielraum der Politik besteht.

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 6

5 Der Weg zum Ziel

5.1 Noch einhundert Jahre warten?

Der Ausbaupfad des EEG: So, wie die Bundesregierung es betreibt, dauert die Energiewende noch 500 Jahre oder bis kein Stück fossiler Brennstoff mehr das ist.

Auf diesem Weg sich das Petitum von Peter Altmaier während seiner Amtszeit als Bundesumweltminister erfüllen: „Die Energiewende muss und wird immer Ziel der Bundesregierung bleiben!“ (Sommer 2013 Rede vor der HWK Augsburg).

Logisch von Herrn Altmaier gedacht: Wenn etwas immer Ziel bleiben soll, darf es nie erreicht werden. Sonst wäre es ja kein Ziel mehr.

Studie der Hochschule für Technik und Wirtschaft Berlin (htw):

„Anforderungen an den Ausbau erneuerbarer Energien zum Erreichen der Pariser Klimaschutzziele unter Berücksichtigung der Sektorkopplung“ http://pvspeicher.htw-berlin.de/sektorkopplungsstudie/

5.x Sündenfall Kohle-Subventionen

5,3 Billionen Dollar Subventionen für fossile Energien:
https://www.energie-und-management.de/nachrichten/detail/oecd-bemaengelt-subventionen-111371
OECD bemängelt Subventionen:
https://www.energie-und-management.de/nachrichten/detail/oecd-bemaengelt-subventionen-111371

Subventionen in die Energiewirtschaft – Das Geld geht an die Falschen:
http://uni.de/redaktion/geld-an-die-falschen-subventionen-in-die-energiewirtschaft

Hunderte Milliarden Dollar für fossile Energien:
http://www.wiwo.de/technologie/green/tech/subventionen-hunderte-milliarden-dollar-fuer-fossile-energien/13552464.html

http://dip21.bundestag.de/dip21/btd/18/068/1806834.pdf
„Europe’s Dark Cloud“: http://wwf.fi/mediabank/8633.pdf
http://www.deutschlandfunk.de/wwf-studie-zu-kohlekraftwerken-europa-unter-der-staubglocke.697.de.html?dram:article_id=359180
http://www.sueddeutsche.de/wissen/luftverschmutzung-toedliche-kohle-glocke-ueber-europa-1.3063507

Typische Schadstofffracht Kohlekraftwerk:
[UBA b] Stromsparen – Schlüssel für eine umweltschonende und kostengünstige Energiewende, 2015, Seite 23
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/hintergrundpapier_stromsparen_web.pdf
Abgleich mit europäischer Datenbank! Typisches deutsches Kohlekraftwerk auswählen.

5.x Die Lügenwelt des Stromnetzausbaus

– DENA-Studie I und II, Sturmtief „Xaver“

– Redispatchment-Maßbahmen – die schlechte Kommunikation der Regelzonen

Bei vollständiger Stromversorgung durch Erneuerbare Energien sinkt der Übertragungsbedarf von 602 TWh auf 394 TWh im Jahr

https://www.vde.com/de/verband/pressecenter/pressemeldungen/fach-und-wirtschaftspresse/2015/seiten/38-15.aspx

Die Versorgung mit Energie betrifft ausnahmslos alle, die gesamte Gesellschaft. Heute getroffene Entscheidungen haben weitreichende Auswirkungen bis weit in die Zukunft. Viele teils kostenintensive Maßnahmen sind nicht mehr rückgängig zu machen. Deshalb, weil alle betroffen sind, sollten auch alle das Recht haben mit zu entscheiden. Aber die grundsätzlichen Entscheidungen sind längst getroffen, die Bürger als Erbringer der Wirtschaftsleistung zur Bezahlung der Rechnung einmal mehr weitgehend außen vor gelassen.

http://www.dena.de/fileadmin/user_upload/Publikationen/Erneuerbare/Dokumente/Endbericht_dena-Netzstudie_II.PDF

Und zwar ohne die Bürger einzubeziehen oder zu fragen. In diversen Informationsveranstaltungen der BNetzA oder der ÜNB wird nur über Einzelheiten auf der Grundlage bereits festgelegter Grundsatzentscheidungen informiert. Statt eines ergebnisoffenen Dialogs, geht es um Beschwichtigung, Belehrung und Bestätigung der für partikulare Interessen großer Konzerne geeigneten Maßnahmen. Mit dem Thema Energie haben diese Maßnahmen zumeist nichts zu tun, dafür umso mehr mit Renditen und lukrativen Anlagemöglichkeiten. Wo der „freie“ Kapitalmarkt keine Renditen mehr erwirtschaftet, sucht das Kapital dann eben staatlich garantierte Gewinne, um den Bürgern weiterhin vermeintlich lukrative Finanzprodukte zu verkaufen, die sie durch die Hintertür doppelt bezahlen.

Diese Grundsatzentscheidungen sind zumindest fragwürdig. Denn wie läuft das in der Umsetzung ab? Als Folge solcher Entscheidungen werden die Übertragungsnetzbetreiber aufgefordert sogenannte Szenariorahmen zu erarbeiten. Auf deren Grundlage werden dann, ebenfalls von den ÜNB, die Ausbaupläne zum Netzausbau erarbeitet. Diese bereits sehr konkrete Planung wird der Bundesnetzagentur zugearbeitet. Die Aufgabe der BNetzA besteht gemäß ihrem Auftrag darin die Aufrechterhaltung und der Förderung des Wettbewerbs zu prüfen. Zu einer umfassenden technischen Prüfung ist die BNetzA weder beauftragt noch in der Lage.

Um es genauer und nachvollziehbar zu beschreiben: Es geht beim Netzausbau um die Sicherstellung von Versorgung mit Strom. Dazu werden in jedem Netzabschnitt die bereits gestellte Leistung nach einem bestimmten Zeitabschnitt – in der Regel ein 15 Minuten Intervall / Viertelstunde – betrachtet und dokumentiert. Warum eine Viertelstunde? Nun, weil das der Modus der Messungen und Abrechnungen für Strom ist. Für jeden Netzabschnitt, jede netzebene und jeden Bilanzkreis werden alle 15 Minuten die Leistungsdaten erhoben und die Energiemengen gemessen und dokumentiert.

Diese gelieferten Leistungen und die korrespondierenden abgefragten Lasten sind jedoch nicht das ganze Jahr konstant. Ein Jahr hat 8.760 Stunden, entsprechend 35.040 Viertelstunden und daher ebenso viele real messbare Zustände mit wechselnden Daten.

Wer nun denkt, um die durchgehende Versorgung sicherzustellen würde ein typisch auf maximale Sicherheit bedachtes konservatives Strommanagergehirn einfach in jedem Netzabschnitt die höchsten auftretenden Lasten/Leistungen und Energiemengen betrachten, der wird erstaunt feststellen, dass genau das nicht der Fall ist. Auf welcher Grundlage die für den Netzaufbaubedarf gewählten Intervalle – es handelt sich immer nur um ein beliebiges Intervall von 35.040 verfügbaren – ist nicht nachvollziehbar. Falls sich darüber überhaupt jemals jemand Gedenken gemacht hat, denn es gibt nirgends eine Behörde, die all diese Daten komplett zur Hand hat und auch kein Unternehmen, dass all diese Daten zusammen betrachten kann. Nein, die Datengrundlage für die Beurteilung der Vorschläge zum Netzausbau durch die BnetzA kommt von ein paar wenigen großen Energiekonzernen, in dem Fall Übertragungsnetzbetreibern.

In der Realität wäre das in etwa so, als würde man die Produktionsdaten von vier Großbrauereien an einem einzigen Nachmittag betrachten um daraus den Bierkonsum der gesamten Bundesrepublik zu berechnen und zu planen.

Kein Wunder, dass die gelieferten Ergebnisse umstritten sind, die BnetzA selbst keine solide Verifizierung liefern kann, und regelmäßig bezüglich ihrer Validität eine kaum wahrnehmbare Halbwertszeit aufweisen. Wie aber kann auch nur ein halbwegs vernunftbegabter Bürger dann darauf vertrauen, dass solche Grundlagen für Planungen über 50 Jahre und mehr tauglich sind.

Darüber hinaus erstaunt es, dass die Vertreter der BnetzA fachlich fast ausschließlich aus Juristen bestehen, die über keine ausreichend tiefe technische Expertise verfügen.

Die Grundlagen und Voraussetzungen der durch die ÜNB erarbeiteten Szenariorahmen und Ausbaupläne sind teilweise nicht öffentlich zugänglich.

Es ist klar zu erkennen: Es gibt kein Korrektiv. Was einzig noch bleibt ist der Widerstand, die Forderung der Bürger nach einer umfassenden Beteiligung an der Gestaltung der Energiewende. Aber genau das ist nicht möglich. Die technische Umsetzung der Energiewende ist sehr komplex und erfordert umfangreiche Sachkenntnisse auf vielen Fachgebieten. Wie kann ein einzelner Bürger das leisten? Um bestimmte Entscheidungen zu hinterfragen sind technische Sachinformationen notwendig. Diese Informationen werden jedoch für vertraulich erklärt. Damit wird klar, dass eine qualifizierte Mitarbeit nicht nur nicht erwünscht ist sondern auch unter Strafandrohung verhindert wird.

5.x Das neue Wirtschaftswunder

Umweltbundesamt: „Ökologische Modernisierung der Wirtschaft durch eine moderne Umweltpolitik“

http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/uib_02_2016_oekologische_modernisierung_der_wirtschaft_durch_eine_moderne_umweltpolitik_0.pdf

Investitionssumme für den Aufbau der notwendigen Erzeugungs- und Speicherkapazitäten, Elektromobilität; Powershift: Grenzenlose Freiheit? Was alles in einem Elektroauto steckt

http://power-shift.de/?p=1771, CO2-Aufwand Elektroauto:

http://www.zeit.de/mobilitaet/2014-01/elektroauto-energiebilanz/seite-2

Arbeitsmarkt: Die Bundesregierung handelt verantwortungslos: Automobilindustrie vor großen Umwälzungen – Energiewende löst das Arbeitsplatzproblem

Mit der Energiewende wird die Rente sicher: – Die Energiewende spart der Volkswirtschaft jedes Jahr 200 Mrd. Euro

zusätzlicher Energieaufwand (vermutlich auch CO2-Ausstoß) durch die Produktion der zusätzlichen Anlagen der erneuerbaren Energie (zum Beispiel durch Solarthermiemodule, Photovoltaikmodule, Batteriespeicher, wenn sie nicht in Südostasien gefertigt werden; Windkraftanlagen, Montageaufwand)
„Energiewende ist ressourcenblind“
http://green.wiwo.de/verbrauch-von-rohstoffen-energiewende-ist-ressourcenblind/

5.x Der technische Übergang

Maßnahmenkatalog – Ergebnis des Dialogprozesses zum Klimaschutzplan 2050 der Bundesregierung
http://www.klimaschutzplan2050.de/wp-content/uploads/2015/09/Massnahmenkatalog-3-1-final-Ergaenzungen-Anpassungen1.pdf
http://www.klimaschutzplan2050.de/ergebnis/ergebnis-des-dialogprozesses-der-massnahmenkatalog-3-1/
„Kopernikus-Projekte“ der Bundesregierung erwähnen:
https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html
https://www.kopernikus-projekte.de/projekte

Im Zuge der Energiewende wird sich die Bereitstellung der Energie von einer „versorgenden“ zu einer „selbstversorgenden“ Struktur wandeln. In der Vergangenheit wurde der Strom hauptsächlich von Großkraftwerken erzeugt und über die verschiedenen Netzebenen gewissermaßen „von oben“, der höchsten Spannungsebene „nach unten“ zu einer niederen Spannungsebene verteilt. Mit dem wachsenden Anteil der Erneuerbaren Energien an der Stromerzeugung wird immer mehr Strom in die unteren Spannungsebenen eingespeist und muss der herrschenden Vorstellung nach dann bei einem regionalen Stromüberschuss über höhere Spannungsebenen verteilt werden. Mit diesem Stromfluss in beide Richtungen sind große technische Herausforderungen verbunden. Das Problem ist, dass bereits heute weit mehr als eine Million Stromerzeugungsanlagen deutschlandweit in unterschiedliche Spannungsebenen, mit wechselnder Leistung und witterungsabhängig – und damit zeitlich eingeschränkt prognostizierbar – den Strom in ein mit vier Regelzonen [2.1d] zentral organisiertes Netz einspeisen. Eine Regelzone ist aber bereits ein dezentrales Netzgebilde, welches unter Einschränkungen Inselfähig ist. In den letzten Jahren mussten die Energieversorger immer mehr kurzfristige Eingriffe in die Leistungssteuerung (die sogenannten „Redispatchment-Maßnahmen“) vornehmen, um die Stromerzeugung mit dem Stromverbrauch im notwendigen physikalischen Gleichgewicht zu halten. [2.1e] Wenn nun im Rahmen der Energiewende der Strom von mehreren Millionen zusätzlicher Anlagen der Erneuerbaren Energien eingespeist und gemanagt werden soll, wird angeblich die Gefahr eines Ausfalls von großen Teilen der Strom- und damit auch der Energieversorgung oder sogar eines totalen Ausfalls („Black-Out“) mit katastrophalen Folgen immer größer. Inwieweit ein 100%-EE-Szenario unter Ausnutzung aller möglichen Quellen auf Basis der zu erwartenden Einspeiseleistungen und Mengen sich auswirkt wurde freilich noch nie betrachtet oder gar nur bedacht. Die enorme Anzahl von Stromerzeugungsanlagen wird angeblich nur noch durch eine verstärkte Automatisierung handhabbar aber nicht wirklich beherrschbar. Dahinter steckt allerdings die herkömmliche Betrachtungsweise, dass die Erzeugung der Anforderung direkt entsprechen muss. Speicherung, Lastmanagement, sektorale Produktionsverschiebungen, etc. werden auch hier nie in die Überlegungen einbezogen. Die entsprechenden Algorithmen wurden von Menschen erdacht und können Fehler enthalten. Es ist mit den aktuell angewandten Mitteln nicht möglich alle technischen Ausfälle von Netzkomponenten oder Betriebsstörungen mit ihren Kettenreaktionen in einem derart komplexen Versorgungssystem vorherzusagen und hierfür Lösungen zu programmieren. Hinzu kommt die zunehmende Gefahr von „Cyberangriffen“, das bewusste kriminelle Suchen nach Sicherheitslücken und Fehlfunktionen, mit dem Ziel, die Versorgungsstruktur lahm zu legen.

https://www.youtube.com/watch?v=AzEmvX8_1jc

Im Verbundprojekt „Intelligente Notstromversorgungskonzepte unter Einbeziehung Erneuerbarer Energien“ hat das Bundesministeriums für Bildung und Forschung die großen Gefahren länger anhaltender, großflächiger Unterbrechungen der Stromversorgung für Wirtschaft und Gesellschaft thematisiert und Strategien erforscht, mit denen im Krisenfall eine Minimalversorgung gewährleistet werden kann.

Ebenso hat das Büro für Technikfolgen-Abschätzung beim deutschen Bundestag die Folgen eines Black-Outs für die Gesellschaft in einer Studie beschrieben [2.1f] Ein genereller Lösungsansatz ist eine dezentrale Energieversorgung mit „inselfähigen Netzen“: Inselfähig heißt, dass sich innerhalb einer regionalen oder lokalen Versorgungsstruktur („Insel“) eine möglichst ausgeglichene Leistungsbilanz aus Erzeugern und Verbrauchern bilden lässt. In der VDE Studie „Der zellulare Ansatz“ wurde diese Möglichkeit untersucht.

https://d2230clyyaue6l.cloudfront.net/wp-content/uploads/VDE_ST_ETG_GANN_web.pdf

Dabei sind die einzelnen Inseln durch ein übergeordnetes Netz verbunden. Das grundsätzliche Ziel ist es, die benötige Leistung aus dem übergeordneten Netz bzw. die Stromlieferung in das übergeordnete Netz möglichst klein zu halten. Es ist leicht zu erkennen, dass die Lastflüsse im übergeordneten Netz dann völlig andere sind als bei der heutigen zentralen Netzstruktur.
Das Teilprojekt „C/sells“ des Förderprogramms „Schaufenster intelligente Energie“ des Bundesministeriums für Wirtschaft und Energie (Beginn Herbst 2016) setzt hier an, in dem eine Netzstruktur mit unterschiedlich großen Inseln gebildet und untersucht werden soll. Die Erwartung ist, dass damit eine effiziente und wenig störanfällige Energieinfrastruktur entsteht.
Im Teilprojekt „enera“ des gleichen Förderprogramms ist zudem die Datensicherheit bei der digitalen Vernetzung von Verbrauchern und Erzeugern einer der Arbeitsschwerpunkte [2.1.g] Der Datenaustausch muss dabei auf das unbedingt notwendige Maß mit höchsten Sicherheitsstandards begrenzt werden.
Dabei bedarf es nachdrücklicher Implementierung der Erweiterung sämtlicher Netzschnittstellen (Umspannwerke, Einspeisepunkte, Ausspeisepunkte, Trafostationen) um hinreichend große Akkuspeicher, durch die eine durchgängige Verknüpfung der Daten von der Erzeugung bis zum Endverbraucher im Detail überflüssig wird.
Die Versorgung mit Elektroenergie gehört, wie bereits an anderer Stelle gesagt, zur öffentlichen Daseinsvorsorge. Das heißt die Versorgung mit Elektroenergie muss unter allen denkbaren Umständen sichergestellt sein. Sicher wird der Grad der Sicherstellung von den Umständen abhängen und nicht 100% sein. Aber die für die Gesellschaft essenziellen Bedürfnisse müssen absolut vorrangig abgesichert werden. Für die Zeit des Übergangs von der Versorgung mit fossilen bis zur vollständigen Versorgung mit regenerativer Energie brauchen wir Übergangslösungen. In den Szenariorahmen der Übertragungsnetzbetreiber wird nur ein Anteil bis ca. 50 % EE berücksichtigt. Die notwendigen Maßnahmen zu 100 % EE werden also nicht geplant und fossile Erzeuger werden auch weiterhin zur laufenden Stromerzeugung eingesetzt. Von heute bis zum 100 % Zeitpunkt sind noch fossile Energieerzeuger notwendig. Diese Kraftwerke sollen aber zur laufenden Stromerzeugung nicht eingesetzt werden sondern dienen ausschließlich als Reserve.
Zuerst sind das die Gaskraftwerke als heiße Reserve, da diese auch mit Power to Gas Brennstoff betrieben werden können. Sie spielen also auch nach dem Ende von Kohle, fossilem Gas und Öl eine wichtige Rolle. Steinkohlekraftwerke werden als kalte Reserve konserviert und betriebsbereit vorgehalten. Sie erhalten einen definierten Kohlevorrat und werden nur im absoluten Ausnahmefall angefahren. Diese Maßnahmen sind so lange notwendig bis wir technisch in der Lage sind die gesamte benötigte Energie für einen festgelegten Zeitraum zwischenzuspeichern.

Meine Meinung: Bitte den Abschnitt etwas genauer ausführen und Leistung und Energie getrennt betrachten!

Der Umbau der Netzinfrastruktur hat zwei unterschiedliche Ziele:

die Sicherstellung der Versorgung der Bürger unseres Landes mit Energie im Sinne der öffentlichen Daseinsvorsorge und

die Erhaltung und Stärkung der internationalen Wettbewerbsfähigkeit der
Energieindustrie- Stromexport.

Der zweite Punkt ist das ausschließliche Ziel und wird bereits in der dena-Netzstudie II so definiert. Man könnte zu dem Schluss kommen, dass der erste Punkt damit automatisch erfüllt wird. Das ist jedoch ein Trugschluss. Das Problem ist, dass tausende Einspeiser an unterschiedlichen Stellen, auf unterschiedlichen Spannungsebenen, mit unterschiedlicher Kapazität, zu vorher nicht bekannten Zeitpunkten in ein zentral organisiertes Netz einspeisen. Ein solches Gebilde ist ein Widerspruch in sich. Eine massenhafte und weiterhin wachsende dezentrale Einspeisung von Elektroenergie soll mit einer zentralen Versorgungsstruktur verknüpft werden. Bereits in /3/ wird durch Fachleute davor gewarnt. Man kann die physikalischen Gesetzmäßigkeiten auf Dauer nicht ignorieren. Aber jedes technische System hat eine Toleranzschwelle, sowohl positiv als auch negativ. Diese zentrale Versorgungsstruktur wird nur durch verstärkte Automatisierung handhabbar, unter normalen ungestörten Bedingungen, aber nicht beherrschbar unter Stress, unter unvorhersehbaren Betriebsbedingungen. Die dazu notwendigen Programme und Algorithmen sind grundsätzlich nicht fehlerfrei. Nicht vorhersehbare Zustände und Fehler im Versorgungssystem können unvorhersehbare Kettenreaktionen auslösen. Wesentlich schwerwiegender sind jedoch Cyberangriffe, das heißt das bewusste Suchen nach Sicherheitslücken und Fehlfunktionen. Das führt im Extremfall zum gezielt herbeigeführten Versagen der Energieversorgung des ganzen Landes – zum Blackout.

Der Weg aus diesem Dilemma ist der Aufbau einer konsequenten dezentralen Versorgungsstruktur. Was bedeutet das im Einzelnen?

Die beschriebenen Vorgänge finden sich auch in einer dezentral organisierten Versorgungsstruktur wieder. Dazu werden innerhalb der vorhandenen Struktur inselfähige Netze gesucht und technisch organisiert. Inselfähig heißt, dass sich innerhalb der Insel eine ausgeglichene Leistungsbilanz aus Erzeugern und Verbrauchern bilden lässt. Die einzelnen Inseln sind sehr wohl durch ein übergeordnetes Netz verbunden. Das grundsätzliche Ziel einer Insel ist aber eine ausgeglichene Leistungsbilanz. Die benötige Leistung aus dem übergeordneten Netz, Lieferung oder Bezug, soll möglichst klein sein. Es ist leicht zu erkennen, dass die Lastflüsse im übergeordneten Netz völlig andere sind als bei einer zentralen Netzstruktur. Angestrebt wird also ein Zustand bei dem aus dem übergeordneten Netz kein Strom entnommen wird. In diesem Fall würde dieses Netz nicht belastet, es fließt kein Strom. Da aber dieser Idealzustand zwar angestrebt, aber nie vollständig erreicht wird, dient das Netz der Versorgungssicherheit. Das Netz ist mit dem Hosenträger an der Hose zu vergleichen. Aber die Hose sollte so gut sitzen, dass man auch ohne Hosenträger nicht gleich ohne Hosen dasteht. Gleichzeitig steigt die Versorgungssicherheit enorm. Bei einem angenommenen Ausfall des übergeordneten Netzes werden sich sehr viele Inseln bilden. Einen vollständigen Blackout durch die beschriebenen Kettenreaktionen kann es somit nicht geben.

Im Teilprojekt „„C/sells: Großflächiges Schaufenster im Solarbogen Süddeutschland“ des Bundesprojektes „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ wird genau diese Fragestellung untersucht:
„Das Schaufenster „C/sells“ überspannt im Süden Deutschlands die Bundesländer Baden-Württemberg, Bayern und Hessen und hat den Schwerpunkt „Solarenergie“… Kern des Schaufensters ist die Demonstration eines zellulär strukturierten Energiesystems, in dem regionale Zellen im überregionalen Verbund miteinander agieren. Die Größe der Zellen ist dabei sehr unterschiedlich. So können einzelne Liegenschaften oder ganze Verteilnetzbereiche solche Zellen bilden. Jede Zelle versorgt dabei subsidiär zunächst sich selbst, indem Energieerzeugung und Last möglichst direkt vor Ort ausgeglichen werden. Die verbleibenden Energiebilanzen werden dann mit anderen Zellen ausgetauscht, um so das Energiesystem insgesamt zu optimieren. Durch den Zellverbund entsteht dadurch eine effiziente und robuste Energieinfrastruktur.“ http://www.bmwi.de/DE/Themen/Energie/Netze-und-Netzausbau/sinteg.html

5.x Neue gesetzliche Rahmenbedingungen

Das Gesetz über die Elektrizitäts- und Gasversorgung, dem Energiewirtschaftsgesetz – EnWG, ist der rechtliche Rahmen zur Energieversorgung der Bundesrepublik Deutschland. Im Zuge der Liberalisierung des Energiemarktes wurde das EnWG schrittweise verändert. So wurde, um nur ein Beispiel zu nennen, die „Bundestarifordnung Elektrizität (BTOElt)“ im Jahr 2007 abgeschafft. Dort war im § 12 Tarifgenehmigung geregelt:

(1) Tarife und ihre einzelnen Bestandteile bedürfen der Genehmigung der Behörde….

In der Folge wurden die Strompreise durch die EVUs schnell angepasst. Zur Erinnerung, das Ziel der Liberalisierung war eine Senkung der Strompreise durch Wettbewerb. Dieser Effekt trat oberflächlich betrachtet nicht ein. Die Strompreise haben sich zwischen 2000 und 2014 für Haushaltskunden fast verdoppelt. Wie gesagt, stimmt das oberflächlich, folgt aber dem gleichen Irrtum wie ihn die Wortführer etlicher Mittelstandorganisationen begehen: Der Strompreis = Abgabepreis der Erzeuger für den reinen Strom ist tatsächlich deutlich gesunken. Was gestiegen ist, ist der Preis für die commodity „Elektrische Energie“, was aber an den Abgaben, Umlagen und steuern liegt, nicht am Preis für die Energie. Die ist faktisch viel zu billig, die Zusatzkosten übergehen nach wie vor die nachhaltigen Auswirkungen der jetzigen Produktionsweisen. Niedrigere Preise zu fordern ist genauso sinnfrei, wie Mietpreisbremsen. Die damit verbundenen Folgen zahlt der Verbraucher dann eben an anderer Stelle.

Generell ist es an der Zeit die Frage nach der Sinnhaftigkeit eines überall und allumfassend durchgedrückten Wettbewerbs „um jeden Preis“ aufzuwerfen. Dieser Leitgedanke einer neo-feudalen Politikerriege widerspricht sich selbst, wenn er behauptet, dass der Wettbewerb als vermeintlich einzig konstitutives Merkmal eines „freien Marktes“ alles regelt und automatisch für Ausgleich sorgt. Wettbewerb kann nur dort stattfinden wo ein Kunde/Verbraucher eine Auswahl zwischen verschiedenen Anbietern des gleichen Produkts hat. Das Produkt ist hier eine commodity, deren Preis sich aus verschiedenen Faktoren zusammensetzt. Der Teil der commodity, der von verschiedenen Anbietern geliefert werden kann, umfasst nur einen geringen Bruchteil des gesamten Produkts. Ein Qualitätsunterschied in der commodity ist so gut wie nicht vorhanden, da alles detailliert technisch genormt ist. Das Produkt taugt folglich nicht für Wettbewerb.

https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2014/10/PD14_354_61241pdf.pdf;jsessionid=07EF7ABC42F1C838525C77F9DDD44482.cae3?__blob=publicationFile

Die Preissteigerung hält weiterhin an weil es, bedingt durch die zentrale Struktur der Energieversorgung, keinen funktionierenden Wettbewerb geben kann. 70% der im Jahr 2015 erzeugten Energie wurden aus fossilen Energieträgern gewonnen. Die Betreiber fossiler Großkraftwerke sind E-ON, EnBW, Vattenfall und RWE. Sie bestimmen maßgeblich, schon durch ihren Marktanteil, den Strompreis. Im Prinzip ist der Strombedarf unter den gegenwärtigen Bedingungen relativ konstant. Er betrug im Jahr 2015 647 TWh. (Widerspruch zu ENTSOE Daten) Mehr war in der Bundesrepublik nicht zu verkaufen. Je größer der Anteil EE ist umso kleiner wird der Anteil fossiler Energie. Der Kuchen ist eben nur 100% groß. EE ist aber ein grundsätzlich dezentrales Element. Eigentlich kann jeder Energie erzeugen und in das Netz einspeisen. Aber mit jeder kWh EE geht der Anteil fossil erzeugter Energie zurück und damit der Profit der „großen vier“. Deshalb wird alles getan um den weiteren Ausbau der EE, ganz gleich in welcher Form, zumindest zu bremsen. Das geschieht über die Änderung und Anpassung des „Gesetzes für den Ausbau erneuerbarer Energien“ – EEG.

Heute, im Juni 2016, gilt die EEG- Novelle 2014. Dort wurde z.B. die direkte lokale Vermarktung des Stromes abgeschafft. Der Zwang den erzeugten EE Strom nur über die Börse zu vermarkten steht im Widerspruch zu den physikalischen Gegebenheiten. Der Strom wird, über das Umspannwerk in das eingespeist wird, zuerst in dem dortigen lokalen Versorgungsgebiet „verbraucht“. Erst die künstliche Zentralisierung EE im Handel ermöglicht eine Einflussnahme sowohl auf den Ausbau als auch auf den Betrieb der EE Anlagen. So ist es möglich EE Windanlagen zentral abzuschalten. Auch EE Solaranlagen werden stufenweise, abhängig von der Anlagengröße, in ein Netzmanagement einbezogen. So werden solche Anlagen wahlweise per Fernzugriff auf 70% der installierten Leistung (kWp) abgeregelt oder von vornherein auf 70% der installierten Leistung begrenzt. All diese Maßnahmen werden immer mit technischen Notwendigkeiten begründet. Es ist nicht möglich diese Begründungen nachzuvollziehen da sie auf Daten und Fakten beruhen die nicht vollständig öffentlich zugänglich sind.

– Wer baut und verdient, darf nicht planen!

In jedem Gemeinwesen, bei vielen Entscheidungen gilt der Grundsatz wer persönlich betroffen ist darf nicht entscheiden. Die konventionellen Energiekonzerne sind betroffen aber sie sollen die Energiewende, die Umstellung auf EE vorbereiten und umsetzen. Wir wissen, dass die vollständige Umstellung auf EE letztlich mit der Stilllegung aller fossilen Kraftwerke endet. Das ist ein radikaler Strukturwandel. Dieser Wandel sollte sinnvollerweise konsequent und schnell erfolgen, weil davon mit sehr hoher Wahrscheinlichkeit unser Überleben abhängt. Aber bei jedem Strukturwandel gibt es Gewinner und Verlierer. Die Energiekonzerne sind die Verlierer. Es ist deshalb völlig verständlich das sie diesen Zeitpunkt möglichst weit hinausschieben wollen. Sie nutzen deshalb ihren Einfluss auf die Politik zum Nachteil des Gemeinwesens. Sie wären systembedingt nie in der Lage auch nicht zeitweise auf Gewinne und Profite zu verzichten oder diese zumindest zu minimieren.

– keine Besteuerung der Eigenerzeugung, keine Besteuerung der Selbsterzeugung – Für das im Garten angebaute Gemüse muss auch keine Mehrwertsteuer bezahlt werden!

– neues System für Netzentgelte

– Einbeziehung der internalisierten Kosten in den Strompreis, Der Kohlestrom wird von der Gesellschaft subventioniert – nicht der Strom aus erneuerbaren Energien, – Aufgabe an die Politik: Jeder Strom hat seinen realen Preis!
Solar-Energieförderverein: „Internalisierungssteuer“

http://www.sfv.de/artikel/radikaler_kurswechsel_in_der_deutschen_energiepolitik.htm#toc05

– Internationale Energieforschung, BMWI Tabelle 44, Kündigung/Beendigung Euratom-Vertrag

5.x Die Bürger müssen es selbst machen

Die Politik mit der aktuellen Gesetzgebung unterstützt eine zügige Umsetzung der Energiewende nur bedingt. Die Vertreter der Interessenverbände der Energieindustrie üben ihren Einfluss sowohl auf europäischer als auch auf nationaler Ebene aus. Das Ziel ist dabei immer ihre marktbeherrschende Stellung zu erhalten und auszubauen. Wir wollen aber einen fairen Interessenausgleich.

Die Anlagenregisterverordnung regelt die Registrierung von EE Anlagen.
https://www.gesetze-im-internet.de/anlregv/BJNR132000014.html

§3 Anlagenregisterverordnung
(1) Anlagenbetreiber müssen Anlagen, die nach dem 31. Juli 2014 in Betrieb genommen werden, nach Maßgabe der Absätze 2 und 3 registrieren lassen.

Der Satz (1) ist nicht anzuwenden, wenn die Anlage nicht an ein Netz angeschlossen ist und der in der Anlage erzeugte Strom auch nicht mittels kaufmännisch-bilanzieller Weitergabe in ein Netz angeboten wird oder werden kann.

Das EEG- 2014 regelt die bevorzugte Einspeisung von Strom aus erneuerbaren Quellen in das (öffentliche) Stromnetz.
Im EEG § 61 ist dazu folgendes geregelt:
§ 61 EEG-Umlage für Letztverbraucher und Eigenversorger
(1) Die Übertragungsnetzbetreiber können von Letztverbrauchern für die Eigenversorgung folgende Anteile der EEG-Umlage nach § 60 Absatz 1 verlangen:
……
(2) Der Anspruch nach Absatz 1 entfällt bei Eigenversorgungen,
1. soweit…
2. wenn der Eigenversorger weder unmittelbar noch mittelbar an ein Netz angeschlossen ist,
3. wenn sich der Eigenversorger selbst vollständig mit Strom aus erneuerbaren Energien versorgt und für den Strom aus seiner Anlage, den er nicht selbst verbraucht, keine finanzielle Förderung nach Teil 3 in Anspruch nimmt, oder
4. wenn Strom …

Das bedeutet klar das Inselanlagen, also Anlagen nach (2) 2. vom EEG oder auch vom EnWG nicht erfasst werden. Ein Kabel welches die eine Inselanlage mit einer oder mehreren benachbarten Inselanlagen verbindet ist ebenfalls möglich, wenn es sich dabei um ein privates Netz handelt. Auch ein Wohnblock – ein Quartier enthält ein mitunter umfangreiches (privates) Netz zu Verteilung von Elektroenergie. Das Problem ist das bei Ausfall der EE Energie keine Verbindung zum öffentlichen Netz und damit keine Versorgung bestehen würde. Die Lösung besteht in der Aufteilung des (privaten) Netzes in mehrere Teilnetze. Ein Teilnetz ist mit dem öffentlichen Netz auf herkömmliche Weise verbunden. Ein weiteres Teilnetz ist „weder unmittelbar noch mittelbar an ein (öffentliches) Netz angeschlossen“. Dieses zweite Teilnetz ist dann ein Inselnetz, dient der Verteilung von EE an alle Netzteilnehmer und ist nicht vom EEG betroffen. Die technische Ausführung solcher elektrischen Anlagen ist problemlos möglich und kann sehr flexibel gestaltet werden.
Vorsicht im Fall (2) 3, es wird zwischen Letztverbraucher und Eigenversorgung unterschieden.

Die Selbstversorgung mit Photovoltaik und Speicher wird für den Stromerzeuger mit Hilfe des EEG und durch steuerliche Maßnahmen erschwert. So muss der Betreiber von EE Anlagen über 500 kW seinen Strom zwingend an der Strombörse anbieten.
http://www.energiedialog.nrw.de/das-neue-eeg-2014-was-aendert-sich/
Es ist nur ein minimaler Eigenverbrauch zugelassen. Die Steuerliche Bewertung des Eigenverbrauchs von Kleinerzeugern ändert sich jährlich. Die Vergütung für Solarstrom beträgt zurzeit 12,31 ct/kWh. Allein die jährlichen Abschreibungskosten betragen, je nach Anlagengröße etwa 10 ct/kWh. Es bleibt also ein Ertrag von 2,31 ct/kWh. Bei einer jährlichen Einspeisung von 5.000 kWh bleiben gerade mal 116 € Gewinn übrig. Reine Einspeisung lohnt sich nur ab einer bestimmten Anlagengröße. Der Eigenverbrauch von Solarstrom zählt als Privatentnahme und muss entsprechend versteuert werden. Das mindert den Gewinn zusätzlich.

Was können wir dagegen tun

Abmeldung der EE Anlage nach 5 Jahren oder die Errichtung besonders kleiner Anlage ohne Anmeldung. Die Kapazität einer Neuanlage nur 2 bis 3mal so groß bemessen (in KWp) wie der durchschnittliche eigene jährliche Strombedarf ist. Einspeisung des Überschusses ohne Vergütung. Eigenverbrauch und Bildung von Verbrauchergemeinschaften. Damit keine Steuern, keine Kontrolle. Der Gewinn ist der nicht benötigte Strom vom örtlichen Stromanbieter.

– Fernwärme
https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/energie/150310_HHI-Studie-Fernwaerme.pdf

Wir sind Energiepiraten

– der PKW wird elektrisch, 20% der PKWs sind Zweitwagen und könnten sofort auf vollelektrisch „umgestellt“ werden, die Stadt München fördert seit dem 1. April mit einem eigenen Programm:

http://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Gesundheit-und-Umwelt/Klimaschutz_und_Energie/Elektromobilitaet/Foerderprogramm_Elektromobilitaet.html

Deutsche Post baut Elektroautos:
http://www.iwr.de/news.php?e=x1416x&id=30994

Elektrische betriebene sind sehr viel weniger komplex als herkömmliche Fahrzeuge. Auf der Grundlage vorhandener Fahrwerke lassen sich und wurden bereits relativ schnell E-Fahzeuge entwickelt. Teuer sind zurzeit noch die Energiespeicher. Die Preise dafür werden bei einem Massenbedarf aber sehr schnell fallen. Zielpreis. < < 100 €/kWh

– Schnell raus aus den fossilen Antrieben:
http://www.zeit.de/mobilitaet/2016-04/auto-zukunft-benzinmotor-abschaffen-energiewende
Norwegen plant Verbot von Autos mit Benzinmotor
http://www.morgenpost.de/wirtschaft/article207212951/Norwegen-plant-Verbot-von-Autos-mit-Benzinmotor.html
(Niederlande auch)

– Beim Hausneubau auf Solarthermiemodule und Wärmepumpen, Photovoltaik (+ Speicher, wenn kostengünstiger geworden) zurückgreifen
Anzahl der im Jahr 2015 neu installierten Solarwärme-Anlagen: 101.000
Insgesamt installierte Solarwärme-Leistung 2015: 13,4 GW (th)
[Statistikpapier Solarthermie: https://www.solarwirtschaft.de/fileadmin/media/pdf/2016_3_BSW_Solar_Faktenblatt_Solarwaerme.pdf]

Wärmepumpen:

– kommunale Bürgerfonds zur Umsetzung kommunaler Energiesparmaßnahmen
Beispiel: Umstellung auf LED-Straßenbeleuchtung, (Stromersparnis und Verringerung der Lichtverschmutzung,
BMWI: „Es werde Licht – mit energiesparenden Straßenlaternen“
http://www.bmwi.de/DE/Themen/Technologie/Innovationsfoerderung-Mittelstand/hightechlights,did=580814.html
http://www.dena.de/fileadmin/user_upload/Publikationen/Stromnutzung/Dokumente/1430_Broschuere_Energieeffiziente-Strassenbeleuchtung.pdf
https://broschueren.nordrheinwestfalendirekt.de/herunterladen/der/datei/dormagen-final-pdf/von/strassenbeleuchtung-in-dormagen/vom/energieagentur/1779
In Deutschland werden jährlich bis zu 4 Mrd. kWh an Strom für die Beleuchtung von Straßen, Plätzen und Brücken verbraucht;
In Deutschland gibt es etwa 9,1 Millionen Straßenleuchten;
[„Straßenbeleuchtung mit LEDs und konventionellen Lichtquellen im Vergleich – Eine
licht- und wahrnehmungstechnische Analyse aus einer wissenschaftlich begleiteten Teststraße in Darmstadt“, 2009 https://www.nabu.de/stadtbeleuchtung/cd-rom/Inhalte/PDF/H4-9.pdf]
http://www.lichtverschmutzung.de/
http://www.wirsindheller.de/LED-Strassenleuchten.109.0.html
Medienmanipulation? Beschreiben fast nur Vorteile der LED und wählen eine negative Schlagzeile! http://www.welt.de/wissenschaft/umwelt/article145194509/Strassenlaternen-mit-LED-haben-Schattenseiten.html
Straßenbeleuchtung mit Wind:
https://www.ndr.de/fernsehen/sendungen/hallo_niedersachsen/Juist-bekommt-Windkraft-Strassenlaternen,hallonds32442.html
Straßenbeleuchtung mit Sonne:
http://www.gemeinde-train.de/index.php?id=564,165

Stadtwerke und Bürgerbeteiligung:
https://www.unendlich-viel-energie.de/mediathek/broschueren/stadtwerke-und-buergerbeteiligung

– Nachhaltig konsumieren und Geld sparen http://epea.com/de/fallstudien
Kreislaufwirtschaft: http://c2c-ev.de/c2c-konzept/kreislaeufe/

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 5

Das Orangebuch der Energiepiraten – meine Sicht – Teil 5

4 Die Erzeugung der Energie von morgen

Nachdem abgeschätzt wurde, wie groß der Energiebedarf in Deutschland bei einer nachhaltigen Energieversorgung sein wird, stellt sich die Frage, ob mit erneuerbaren Energien auch genügend Strom und Wärme erzeugt werden kann. Dazu muss geklärt werden, ob ausreichend Rohstoffe und ausreichend Flächen für den Aufbau dieser Erzeugungskapazität vorhanden sind.

Im Jahr 2015 wurden mit erneuerbaren Energien 196 TWh Strom erzeugt. Dies war ein Anteil von 32,6% an der Bruttostromerzeugung. [4a] Für die Wärmeversorgung stellten die erneuerbaren Energien 155 TWh bzw. 13,2% zur Verfügung. [4b] Für eine nachhaltige Energieversorgung muss jedoch ungefähr die sechsfache Menge an Strom und die dreieinhalbfache Wärmemenge erzeugt werden (siehe Kapitel 3.2). Welchen Beitrag sollen und können die einzelnen Technologien der erneuerbaren Energien leisten? Dies soll in den nächsten Kapiteln betrachtet werden.

4.1 Zukünftige Stromerzeugung in Deutschland

Photovoltaik bietet das größte Potential, da sämtliche versiegelte Flächen – immerhin 15 % der gesamten Fläche der Bundesrepublik – konfliktarm entweder direkt genutzt oder überdacht und dann genutzt werden können. Dazu zählen sämtliche Eisenbahnflächen, die rund 2% der Bundesfläche einnehmen, sämtliche Autobahne und Bundesstraßen und natürlich alle Gewerbegebiete, Industrieflächen Wohnflächen usw. Denkbar wäre es einen Anreiz zu setzen, indem die kommunale Grundsteuer um einen Nachhaltigkeitsfaktor ergänzt wird, der auf der Nichtnutzung für Energiegewinnung basiert. Auf Deutsch: Wer die Installation von PV, Solarthermie oder kleiner Windkraft (unter 10/12 Meter) unterlässt, muss für den nicht erzeugten EE-Strom eine CO2-Abgabe bezahlen. Das entspricht der Fehlbelegungsabgabe für Sozialwohnungen.

4.1.1 Stromerzeugung durch Wasserkraft

Bei Wasserkraftwerken wird die kinetische Energie von Wasser zur Erzeugung von elektrischem Strom genutzt.
In Deutschland gibt es Laufwasserkraftwerke, Speicherkraftwerke, und Pumpspeicherkraftwerke.
Laufwasserkraftwerke sind Kraftwerke bei denen in der Regel Zufluss und Abfluss gleich sind und nur eine geringe Regulierung der erzeugten Energie erfolgt. Sie sind deshalb typische Grundlastkraftwerke. Da sie permanent laufen können sie bei Blackouts zum Wiederaufbau des Netzes verwendet werden.
Speicherkraftwerke sind Kraftwerke die nur bei Bedarf elektrischen Strom erzeugen. Sie können bei Stromdefiziten im Netz sehr schnell zusätzlichen Strom bereitstellen und tragen damit zur Netzstabilisierung bei. Außerdem sind sie schwarzstartfähig und können deshalb bei Blackouts zum Wiederaufbau des Netzes verwendet werden.

Pumpspeicherkraftwerke werden in einem anderen Kapitel behandelt.
In Deutschland waren 2015 Wasserkraftwerke mit einer Gesamtleistung von 5.614 MW in Betrieb. Diese erzeugten 19.3 GWh Strom. Dies entsprach 3,3% der Stromerzeugung in Deutschland.

[http://www.bmwi.de/BMWi/Redaktion/Binaer/energie-daten-gesamt,property=blob,bereich=bmwi2012,sprache=de,rwb=true.xls]
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12
Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man vier Faktoren berücksichtigen:

1. Flächenverbrauch
2. Rohstoffverbrauch
3. Gesundheitliche Auswirkungen
4. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenverbrauch

Die geomorphologischen Auswirkungen der einzelnen Wasserkraftwerke sind naturgemäß relativ hoch. Ein allgemein gültiger Wert bezüglich der Relation Fläche/TWh kann deshalb nicht angegeben werden.

Rohstoffverbrauch

Für die Staumauern und teilweise auch für Dämme wird Beton verwendet.
Für die Dämme wird meistens Aufschüttmaterial z.B. Kies, Erde verwendet. Daneben wird für Wehre, Turbinen, usw. auch Stahl benötigt.

Gesundheitliche Auswirkungen

Es liegen keine Daten über gesundheitliche Auswirkungen von Wasserkraftwerken auf Menschen vor.

Auswirkungen auf die Tier- und Pflanzenwelt

Die Errichtung eines Wasserkraftwerkes stellt einen erheblichen Eingriff in die Natur dar. Dies betrifft sowohl Flora und Fauna. Abhängig vom jeweiligen Standort kann es durch den Bau sogar zu einer vollkommenen Umgestaltung des Biotops kommen.

Zukünftige Weiterentwicklung der Wasserkraft

Der Bundesverband Deutscher Wasserkraftwerke geht davon aus, dass bis 2030 die Stromproduktion auf 31 TWh gesteigert werden kann.

http://www.wasserkraft-deutschland.de/wasserkraft/potentiale.html
Je ein Drittel der Produktionssteigerung entfällt auf Modernisierung, Reaktivierung von stillgelegten Anlagen und Neubauten.
Dies würde jeweils knapp 4 TWh für die jeweiligen Maßnahmen entsprechen. Dagegen geht die Bundesregierung von einem deutlich geringeren Zubau aus. In der Studie „Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland“

[http://www.die-klima-allianz.de/?email_id=91&user_id=961&urlpassed=aHR0cDovL2tsaW1hbWVkaWF0aGVrLmRlLw%3D%3D&controller=stats&action=analyse&wysija-page=1&wysijap=subscriptions]

wird das realisierbare Zubaupotential wie folgt untergliedert.
Zubaupotential an großen Gewässern:
Zubaupotential an bestehenden Standorten 2,7 TWh.
Zubau durch Neubauten 1,3 TWh. Jedoch wird die Verwirklichung als schwierig angesehen.
Für mittelgroße und kleine Gewässer wird ein technisch-ökonomisch-ökologisches Zubaupotential
von etwa 0,4 TWh abgeschätzt.
Dies bedeutet insgesamt einen möglichen Zubau von 3,1 TWh.
Diese Zahl erscheint deutlich realistischer als die vom Bundesverband Deutscher Wasserkraftwerke abgeschätzte Zahl.
Damit ergibt sich für die Zukunft eine Stromerzeugung von 22,7 TWh durch Wasserkraftwerke.

Atlas zum Beispiel für Laufwasserkraftwerke oder Geothermie mit Erzeugungsdaten:

http://www.energie-experten.org/energieatlas.html?id=186&tx_eeenergieatlas_pi1[postleitzahl]=&tx_eeenergieatlas_pi1[energiequelle]=6&tx_eeenergieatlas_pi1[suchen]=ok
(Link komplett in den Browser kopieren!)

4.1.2 Stromerzeugung mit Klär- Deponie- und Grubengas

Im Faulturm einer Kläranlage entsteht bei der biologischen Umsetzung Klärgas. Dieses kann in einen Gasspeicher gepumpt werden, aus dem die Heizkessel des Klärwerks und ein Gasmotor für die Stromerzeugung versorgt werden. Die bei der Verstromung entstehende Wärme kann ebenfalls als Prozesswärme im Klärwerk eingesetzt werden. Das Klärgas setzt sich im Wesentlichen aus den Komponenten Methan – ca. 60% je nach organischen Einsatzstoffen etwas schwankend – und ca. 37% Kohlendioxid sowie weiteren Spurenstoffen zusammen. [4.1.2a]

Auch in Mülldeponien entsteht hauptsächlich durch den bakteriologischen und chemischen Abbau von organischen Inhaltsstoffen des Mülls das Deponiegas. [4.1.2b] Hauptbestandteile sind Methan zu 35% bis 60% und Kohlendioxid zu 20% bis 45% wobei der Methan-Gehalt im Verlauf der Jahre abnimmt. [4.1.2c]

Beim Steinkohleabbau wird das sogenannte „Grubengas“ freigesetzt. Untertage ist das methanhaltige Gas ein Sicherheitsproblem, da es in bestimmten Konzentrationen explosiv ist und damit das Leben der Bergleute gefährdet. Es muss daher sicher abgeführt werden und kann zur Strom und Wärmeerzeugung genutzt werden. Für die energetische Nutzung des Grubengases ist auf Grund der schwankenden Methangasgehalte von 30 bis 80 Volumenprozenten allerdings eine spezielle Anlagen- und Gasmotorentechnik erforderlich. [4.1.2d]

Im Jahr 2014 wurden 1,3 TWh Strom mit Klärgas und 0,5 TWh mit Deponiegas [4.1.2e] und nach Angaben des Interessenverbands „Grubengas e. V.“ 0,8 TWh Strom in den nordrheinwestfälischen Kohlekraftwerken. [4.1.2f]

Es ist davon auszugehen, dass zukünftig durch nachhaltige Produktionskonzepte (siehe das „cradle to cradle“-Konzept) die Deponierung von Reststoffen und durch das Schließen der letzten deutschen Kohlezechen in wenigen Jahren die aus Deponie- und Grubengas erzeugte Strommenge deutlich abnehmen wird. Auch der Anteil des Klärgases an der Stromerzeugung ist bereits heute gering. Daher wird der Anteil der Stromerzeugung aus diesen Gasen bei den weiteren Berechnungen vernachlässigt.

4.1.3 Stromerzeugung mit Biomasse

Biogas entsteht durch mikrobiellen Abbau organischer Stoffe.
Neben organischen Abfallstoffen wie Klärschlamm, Bioabfall, Gülle, Mist und Pflanzenresten werden inzwischen hauptsächlich sogenannte Energiepflanzen zur Biogaserzzeugung verwendet. Diese werden speziell für die Erzeugung von Biogas angebaut und stehen damit in direkter Konkurrenz zur Produktion von Nahrungsmitteln. In Deutschland wird hauptsächlich Mais zur Erzeugung von Biogas verwendet. Im Jahr 2013 wurde mit rund 0,9 Millionen Hektar ca.1/3 der Maisanbaufläche für die Biogasproduktion genutzt. [3.1a] Im Jahr 2013 waren 7720 Anlagen mit einer installierten elektrischen Leistung von 3.550 MW in Betrieb. Diese erzeugten 27 TWh Strom, was 4,3% des deutschen Stromverbrauchs entsprach. [3.1a]

Biogas besteht hauptsächlich aus Methan und CO2. Der Methangehalt und der Ertrag je Tonne Rohmasse ist abhängig vom verwendeten Ausgangsmaterial. Da der Methanertrag pro ha beim Anbau von Mais am höchsten ist wird hauptsächlich Mais als Ausgangsmaterial verwendet. [3.1b] Bei dem entstehenden Biogas liegt der Methangehalt zwischen 50% und 75%. [3.1b] Da die Reinigung von Biogas technisch sehr aufwendig ist wird es in der Regel direkt verwertet und nicht in das bestehende Erdgasnetz eingespeist.

Da Biogas aus nachwachsenden Rohstoffen erzeugt wird ist seine CO2 Bilanz neutral. Jedoch entweicht bei der Produktion Methan. Dieses hat eine um den Faktor 25 höhere Klimaschädlichkeit als CO2. Deshalb kann die Verwendung von Biogas nicht als klimaneutral angesehen werden. Beim Anbau von Mais als Biosubstrat werden verstärkt Dünger und Pflanzenschutzmittel eingesetzt. Außerdem sind in den letzten Jahren die Pachtpreise für Ackerland angestiegen.

Biogasanlagen sind laut Baugesetzbuch (BauGB) §35 im Außenbereich privilegierte Bauvorhaben, falls sie eine bestimmte Größe nicht überschreiten. [3.1c] Dies erleichtert den Bau von Biogasanlagen.

Die Stromerzeugung aus Biogasanlagen erfolgt heute in der Regel im Dauerbetrieb.
Deshalb wären Biogasanlagen grundlastfähig.
Aufgrund der Bauweise, bei der die Stromerzeugung mit Gasturbinen erfolgt, wäre jedoch auch eine Nutzung zur Bereitstellung von Regelenergie möglich. Jedoch müssten die gesetzlichen Grundlagen für die Bereitstellung von Regelleistungen geändert werden, damit dieser Modus für die Betreiber rentabel wäre.

Bei einer Gesamtbewertung der Stromerzeugung aus Bioenergie kommt man zu keinem eindeutigen Ergebnis. Einerseits kann man die Verwertung von organischen Abfällen positiv bewerten, andererseits ist der Anbau von Energiemais jedoch schädlich für eine ökologische Landwirtschaft und den Erhalt der Artenvielfalt. Auch könnte die Bereitstellung von Regelenergie als Ausgleich für die fluktuierende Stromerzeugung durch PV und Windkraftanlagen genutzt werden. Mitzudenken sind in jedem Fall die spezifischen Erzeugungskosten von 20 ct. / kWh bis 22 ct. / kWh. Wirtschaftlich also jedoch nur über massive Subventionen oder Belastung der konkurrierenden Technologien über CO2-Abgaben.

Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man fünf Faktoren berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenbedarf

Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Biogas ist sehr hoch. Im Jahr 2013 wurden 1,268 Mio. Hektar Anbaufläche in der Bundesrepublik Deutschland für die Produktion der Rohstoffe zur Biogasproduktion genutzt. [3.1e] Dies entspricht rund 10% der Ackerfläche in Deutschland. Da damit 2013 nur ca. 4,3% des deutschen Strombedarfs gedeckt worden sind ist offensichtlich, dass Biogas niemals einen entscheidenden Anteil an der Stromproduktion haben kann.
Zudem ist zu berücksichtigen, dass die Produktion von Pflanzen für die Stromerzeugung zu einer Konkurrenz mit der Nahrungsmittelproduktion führt. Es werden deshalb auch vermehrt Futtermittel für die Fleischproduktion importiert, da die entsprechenden Flächen für eine heimische Produktion nicht mehr zur Verfügung stehen. [3.1f]

Rohstoffverbrauch

Neben den Flächen werden bei der Produktion von Energiepflanzen große Mengen an Düngemittel und Pflanzenschutzmitteln verwendet. Für deren Herstellung werden große Mengen an Phosphat, Erdöl und weitere Rohstoffe benötigt.

Recycling von alten Anlagen

Für das Recycling von alten Anlagen existieren etablierte Verfahren.

Gesundheitliche Auswirkungen

Es gibt bisher keine belastbaren Aussagen über direkte gesundheitliche Schäden. Indirekt ist jedoch eine Nitratbelastung des Trinkwassers bzw. durch Pestizide möglich.

Auswirkungen auf die Tier- und Pflanzenwelt

Durch den vermehrten Einsatz von Düngemittel und Pflanzenschutzmitteln kommt es zu einer Beeinträchtigung der Tier- und Pflanzenvielfalt. Ebenso führt der großflächige Anbau von Maismonokulturen zu einer weiteren Beeinträchtigung der Biodiversität. [3.1g]

Zukünftige Weiterentwicklung der Stromerzeugung durch Biogas

Mit der EEG Novelle 2014 wurde eine Limitierung des Zubaus festgelegt. [3.1d] Der Zubau soll nicht mehr als 100 Megawatt installierter Leistung pro Jahr betragen.
Bei einer Änderung der Vergütungsstruktur wäre statt des heute üblichen Dauerbetriebs auch ein bedarfsorientierter Betrieb möglich. Dabei sollte die Vergütung nicht unabhängig vom aktuellen Stromangebot sein, sondern bei einem geringen Stromangebot aus anderen erneuerbaren Energien ein höherer Preis bezahlt werden. Damit könnten verminderte Einspeisungen von Windkraftanlagen und PV Modulen zumindest teilweise ausgeglichen werden.

Diesen möglichen positiven Effekt stehen jedoch erhebliche ökologische Nachteile entgegen.

Wegen der negativen Auswirkungen auf Natur und Umwelt sollte der weitere Anbau von sogenannten Energiepflanzen mittelfristig reduziert und langfristig gestoppt werden. Diese Flächen könnten dann für eine nachhaltige Nutzung an die bäuerliche Landwirtschaft zurückgegeben werden. Die Option der Energiewälder (Hackschnitzel Pellets) darf dabei bitte nicht pauschal mit verworfen werden. Diese sind sehr sinnvoll und bauen Böden neu auf.

Für die Biogaserzeugung mittels organischer Abfallstoffe sollten strengere Umweltauflagen eingeführt werden. Dies würde zu einer deutlichen Reduktion der Stromerzeugung durch Biogas führen. Es wird von einer Reduktion auf 25% der heutigen Kapazität, also 5,5 TWh ausgegangen.
http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/erneuerbare-energien-in-zahlen-2015.pdf?__blob=publicationFile&v=3

Da der Anteil der Stromerzeugung durch Biogas jedoch sehr gering ist könnte diese Verminderung leicht durch andere erneuerbare Energien ersetzt werden.

Alternativ bietet die Biomasse als direkte Quelle für CO2 zu synthetischem Methan und durch Reformeirung und Entschwefelung des ohnehin anteilig entstehenden Methans die Option, dieses biogene Gas statt lokaler Verbrennung vor Ort wo die Wärme meist kaum genutzt werden kann, einfach in das Gasnetz einzuspeisen. Das Gasnetz flächendeckend zur Versorgung auszubauen ist ohnehin eine wichtige Option, da Erdgas noch sehr lange vorhanden sein wird, klimafreundlicher ist als Öl, Benzin und Diesel und via Gas-Elektro-Hybridfahrzeugen eine deutliche stärkere Rolle im Verkehr spielen wird.

Quellen und weiter Informationen:

[3.1a] https://web.archive.org/web/20141214165348/http://media.repro-mayr.de/44/623744.pdf
[3.1b] https://mediathek.fnr.de/media/downloadable/files/samples/b/r/brosch-biogas-2013-web-pdf_1.pdf
[3.1c] http://www.gesetze-im-internet.de/bbaug/
[3.1d] http://www.gesetze-im-internet.de/eeg_2014/
[3.1e] http://www.statistischesbundesamt.de/
[3.1f] https://www.bund-naturschutz.de/fileadmin/_migrated/content_uploads/Biomassenutzung__Positionspapier_Biogas.pdf
[3.1g] http://www.bund-naturschutz.de/

Bundesministerium für Ernährung und Landwirtschaft

http://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Bioenergie-NachwachsendeRohstoffe/FNR-Basisdaten-Bioenergie-2013.html

Fachverband Biogas e.V

http://www.biogas.org/edcom/webfvb.nsf/ID/DE_Homepage

https://de.wikipedia.org/wiki/Biogas
http://www.onmitan.de/
http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Entwicklung_der_erneuerbaren_Energien_in_Deutschland/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.html

Biomasse

Unter Biomasse werden hier feste Brennstoffe aus nachwachsenden Rohstoffen verstanden. Der überwiegende Teil davon wird in Deutschland für reine Heizzwecke verwendet. (Siehe hierzu das entsprechende Kapitel unter Wärmeerzeugung). Im Jahr 2012 waren in Deutschland 540 Biomasseheizkraftwerke mit einer installierten elektrischen Leistung von 1.560 MW und einer Stromerzeugung von 8,4 TWh in Betrieb. [3.2a]
Die meisten Biomasseheizkraftwerke sind als Kraft-Wärme-Kopplungsanlagen in Betrieb. In diesem Modus erreichen sie einen Gesamtwirkungsgrad von bis zu 80% Prozent. Ansonsten erreichen sie einen Wirkungsgrad von 25%-30% Prozent für die Erzeugung von elektrischer Energie.

Umwelttechnisch problematisch sind Biomasseheizkraftwerke wenn sie nicht nur unbehandelte Biomasse verbrennen, sondern behandeltes Holz oder teilweise auch Kunststoffabfälle verfeuern. (So wie z.B. die Biowärme Kaufering mit einer Öleinspritzung zur Spitzenlasterzeugung) Es handelt sich dann um Müllverbrennungsanlagen. Sie arbeiten nach dem gleichen Prinzip wie Biomasseheizkraftwerke, müssen dabei aber sehr strenge Umweltauflagen einhalten.

Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man fünf Faktoren berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenbedarf
Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Biomasse ist sehr hoch.

Rohstoffverbrauch
In der Forstwirtschaft werden im Vergleich zur übrigen Landwirtschaft relativ wenig Düngemittel und Pflanzenschutzmitteln eingesetzt. Deshalb ist der Rohstoffverbrauch im Vergleich zur normalen Landwirtschaft auch gering. Bei der Nutzung von Kurzumtriebsplantagen werden leider jedoch vermehrt Düngemittel eingesetzt. (Gier macht Blind)

Recycling von alten Anlagen
Für das Recycling von alten Anlagen existieren etablierte Verfahren.

Gesundheitliche Auswirkungen
Es gibt bisher keine belastbaren Aussagen über direkte gesundheitliche Schäden. Indirekt ist jedoch eine Nitratbelastung des Trinkwassers bzw. durch Pestizide beim Anbau von Biomasse möglich. Außerdem ist bei der Verbrennung von Abfällen eine mögliche Schadstoffbelastung durch behandelte Materialien nicht auszuschließen.

Auswirkungen auf die Tier- und Pflanzenwelt

Bei der energetischen Nutzung von Biomasse verbleiben im Gegensatz zur üblichen Holzwirtschaft keine Abfälle im Wald, da diese ja ebenfalls verbrannt werden können. Diese fehlen dann im Biotop und beeinträchtigen damit die Biodiversität. Speziell gilt dies für Kurzumtriebsplantagen in denen oft auch standortfremde Arten gepflanzt werden.

Zukünftige Weiterentwicklung der Biomassenutzung

Die Stromerzeugung aus Biomasseheizkraftwerken erfolgt heute in der Regel im Dauerbetrieb. Jedoch wäre auch eine Nutzung zur Bereitstellung von Regelenergie möglich. Dazu müssten jedoch die gesetzlichen Grundlagen für die Bereitstellung von Systemdienstleistungen geändert werden damit dies für die Betreiber rentabel wäre. Jedoch ist zu berücksichtigen, dass ein größerer Ausbau der Erzeugungskapazitäten nicht möglich ist. Denn die genutzten Brennstoffe wachsen nur relativ langsam nach.
Wegen der negativen Auswirkungen auf Natur und Umwelt sollte der weitere Anbau von sogenannten Energiepflanzen mittelfristig reduziert und langfristig gestoppt werden. Diese Flächen könnten dann für eine nachhaltige Nutzung an die bäuerliche Landwirtschaft zurückgegeben werden.
Über die Nutzung von Abfallstoffe sollten strengere Umweltauflagen eingeführt werden.
Dies würde zu einer deutlichen Reduktion der Stromerzeugung durch Biomasse führen.
Es wird von einer Reduktion auf 25% der heutigen Kapazität, also 2 TWh ausgegangen.

http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/erneuerbare-energien-in-zahlen-2015.pdf?__blob=publicationFile&v=3]
Da der Anteil von Biomasse bei der Stromerzeugung jedoch sehr gering ist könnte diese Verminderung leicht durch andere erneuerbare Energien ersetzt werden.

Quellen und weitere Informationen:

[3.2a] http://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Bioenergie-NachwachsendeRohstoffe/FNR-Basisdaten-Bioenergie-2013.pdf?__blob=publicationFile

Bund Naturschutz in Bayern e.V.
http://www.bund-naturschutz.de/

https://de.wikipedia.org/wiki/Biomasseheizkraftwerkhttps://de.wikipedia.org/wiki/Biomasse
http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Entwicklung_der_erneuerbaren_Energien_in_Deutschland/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.html

4.1.4 Stromerzeugung mit Windkraftanlagen auf See

Die Stromerzeugung mit Windkraftanlagen auf See ist die technisch aufwendigste [4.1.4a] und mit bis zu 19,4 Cent/kWh auch zweitteuerste Stromerzeugung mit erneuerbaren Energien. Vergleicht man die Vergütungssätze im „Erneuerbare-Energien-Gesetz“ (EEG), so ist die Kilowattstunde ungefähr 60% teuer als die mit Photovoltaik und dreimal so teuer als die mit Windkraftanlagen an Land erzeugte. Lediglich Strom aus Geothermie ist nach wie vor wider jede Vernunft mit 25 ct / kWh vergütet und löst immense Direktsubventionen einzelner Kommunen aus Steuermittel aus, die niemals zurückerwirtschaftet werden. [4.1.4b]

Zum 31.12.2015 war eine Leistung von 3,3 GW Off-Shore Windkraft an das Stromnetz angeschlossen [4.1.4c] und sie soll nach den Vorgaben des „Erneuerbare Energien Gesetzes“ bis zum Jahr 2030 auf 15 GW ausgebaut werden. [4.1.4d] Dann ist mit einer Stromerzeugung von ca. 60 TWh im Jahr zu rechnen. Dies ist jedoch nur ein Anteil von 5% der zukünftig erforderlichen Strommenge. Aufgrund der vergleichsweise hohen Kosten für die Stromerzeugung und für den notwendigen Ausbau des Stromübertragungsnetzes sowie des trotz eines erheblichen Aufwands nur kleinen Anteils an der erforderlichen Stromerzeugung ist ein weiterer Ausbau über das Jahr 2030 hinaus nicht sinnvoll.

(„Merksatz“:) Ausbau-Stopp für Windkraftanlagen auf See spätestens ab einer Leistung von 15 GW

4.1.5 Stromerzeugung mit Windkraftanlagen an Land

Windkraftanlagen an Land werden von Menschen bereits seit fast 4.000 Jahren genutzt. Ursprünglich wurden sie als Getreidemühlen und Wasserpumpen genutzt. Aber auch als Kraftmaschinen im Gewerbe wurden sie eingesetzt. Diese Nutzung ging jedoch mit der industriellen Revolution zurück und die Mehrzahl der Windmühlen wurde aufgegeben.
Wenn man heute von Windkraftanlagen spricht, dann wird von Anlagen zur Erzeugung elektrischer Energie gesprochen. 1991 begann mit dem Stromeinspeisungsgesetz der Aufschwung der Windenergienutzung in Deutschland. Mit dem seit dem Jahr 2000 gültigen EEG nahm die Nutzung der Windenergie einen weiteren Aufschwung.
Neben der Anzahl der Anlagen stieg auch die Leistung der einzelnen Anlagen. Während Anfangs Windkraftanlagen mehr oder minder Einzelanfertigungen waren werden die Anlagen inzwischen industriell in Serie gefertigt.
Ende 2015 gab es in Deutschland an Land (onshore) 25.980 Anlagen mit einer Nennleistung von 41.652 MW. [3.3a] Offshore speisten 546 Anlagen mit einer Nennleistung von 2.282 MW ins Netz ein. [3.3b]
Insgesamt speisten Windkraftanlagen 2015 86 TWh Strom ins deutsche Netz ein. [3.3c] Der weitere Ausbau von Offshore-Anlagen ist jedoch durch die EEG Novelle von 2014 auf 6500 MW Nennleistung bis 2020 begrenzt. [3.3d]

Die Windkraftanlagen sind nicht gleichmäßig in Deutschland verteilt. Die Mehrzahl der Anlagen steht in den nördlichen, windreichen Bundesländern. Erst in den letzten Jahren bieten die Hersteller spezielle Anlagen für geringere durchschnittliche Windgeschwindigkeiten an, so dass auch in den südlichen, windschwächeren Bundesländern der Betrieb von Windkraftanlagen rentabler wird.

Dadurch, dass Windkraftanlagen vom Wind abhängig sind können sie nicht kontinuierlich Strom produzieren. Die Bundesnetzagentur rechnet für Windkraftanlagen daher nur mit einer gesicherten Leistung von 0,5%, obwohl die Realität deutlich mehr zeigt.
Der weitere Ausbau der Windenergie wird zunehmend durch Proteste behindert. Die Argumente gehen dabei vom Naturschutz bis zu gesundheitlichen Gefahren durch Infraschall und dem deutlichen Wertverlust von Immobilien angrenzender Wohnbebauung. Auch das irreführende Bild einer fluktuierenden Stromerzeugung (Flatterstrom) und eine angebliche Unrentabilität von Windkraftanlagen wird oft von Gegnern ins Feld geführt. [3.3f] Eine besondere Rolle bei der Verhinderung von Windkraftanlagen spielt Bayern. Hier ist durch die sogenannte 10H Regelung der weitere Ausbau der Windenergienutzung faktisch zum Erliegen gekommen. [3.3g] [3.3h]. In 2015 wurde genau ein Windpark mit vier Windrädern gemäß der 10-H-Regelung genehmigt. Der Rest bestand aus der Umsetzung von Altanträgen.

Ökologische Betrachtung

Bei der ökologischen Betrachtung von Windkraftanlagen sind fünf Faktoren zu berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Eine datenbasierte Analyse erforderlich, u. a. deshalb:
„Energiewende ist ressourcenblind“

http://green.wiwo.de/verbrauch-von-rohstoffen-energiewende-ist-ressourcenblind/

Ressourceneffizienz für den Bereich der erneuerbaren Energien bedeutet, die Systeme für Versorgung, Umwandlung, Speicher und Transport mit minimalem Aufwand an Fläche und Rohstoffen auszulegen. Es geht um die Erhöhung der lebenszyklusweiten Materialeffizienz und die Verringerung des Flächenbedarfs. Der Gesamtaufwand an stofflichen Primärressourcen sollte systemweit verringert und der Anteil von rezykliertem Material sukzessiv gesteigert werden. Beim Flächenaufwand kann insbesondere im Bereich der Bioenergie die Konkurrenz mit Nahrungsmitteln und stofflichen Verwendungen der Biomasse verringert werden.

http://www.fvee.de/forschung/forschungsthemen/effizienz/

Studien zur Ressourceneffizienz:

Fraunhofer IPA: „Analytische Untersuchung zur Ressourceneffizienz“, April 2015
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

Nexus Ressourceneffizienz und Energiewende, Oktober 2014:
hhttp://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

Hier finden sich alle Daten zu den untenstehenden Themenbereichen der Windkraft:

VDI Zentrum für Ressourceneffizienz: „Technologien und Ressourceneffizienz in der Windenergie“

http://windenergie.ressource-deutschland.de/
http://windenergie.ressource-deutschland.de/

Kurzanalyse Nr. 9: Ressourceneffizienz von Windenergieanlagen
http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/2014-Kurzanalyse-VDI-ZRE-09-Ressourceneffizienz-Windenergieanlagen.pdf

Flächenverbrauch

Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Windkraftanlagen wird oft als zu hoch für die Bundesrepublik Deutschland dargestellt.
Eine Windkraftanlage der 3 MW Klasse benötigt eine Fundamentfläche von 300 m². Für Wartungsarbeiten wird eine frei zugängliche Fläche von ca. 50*50 Metern benötigt. Bei dieser Fläche ist jedoch eine weitere landwirtschaftliche Nutzung fast uneingeschränkt möglich.

Anders sieht die Situation bei den Abständen zwischen den einzelnen Windkraftanlagen aus. Zwischen den einzelnen Windkraftanlagen müssen anlagenabhängig größere Abstände eingehalten werden. Doch auch bei diesen Flächen ist eine landwirtschaftliche Nutzung fast uneingeschränkt möglich.

Rohstoffe

Windkraftanlagen bestehen hauptsächlich aus Beton und Stahl.
Das Fundament des Turmes besteht aus Stahlbeton. Der Turm besteht entweder komplett aus Stahl oder bei sogenannten Hybridtürmen im unteren Teil aus Beton und dem oberen Teil aus Stahlsegmenten. Hybridtürme sind bei größeren Windkraftanlagen inzwischen Standard.
Beton und Stahl sind häufig und stellen somit keinen Engpass bei der Errichtung von Windkraftanlagen dar.
Die Rotorblätter moderner Windkraftanlagen bestehen entweder aus glasfaserverstärktem Kunststoff oder aus kohlefaserverstärktem Kunststoff. Auch die Bestandteile der Rotorblätter stellen keinen rohstofflichen Engpass bei der Errichtung von Windkraftanlagen dar.
Der wichtigste Bestandteil einer Windkraftanlage ist das Maschinenhaus bzw. Gondel. In ihm sind der Generator, die Windnachführung, Steuerungselektronik und eventuell ein Getriebe untergebracht. Bei den Generatoren kommen hauptsächlich Asynchrongeneratoren zum Einsatz. Bei den Synchrongeneratoren wird zwischen fremderregten und permanenterregten unterschieden. Nur bei permanenterregten Synchrongeneratoren kommen Neodym-Eisen-Bor Magnete zum Einsatz, bei deren Rohstoffgewinnung es zu Umweltproblemen kommt. Deshalb sollte langfristig gesehen auf permanenterregte Synchrongeneratoren verzichtet werden und stattdessen sollten fremderregte verwendet werden.

In der Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), wird ab Seite 56 auf den Rohstoffverbrauch für offshore Windenergieanlagen (für 1GW Leistung) eingegangen. [https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Die Energierücklaufzeit, also die Zeit in der die für die Herstellung verbrauchte Energie wiedergewonnen ist beträgt ca. 5-7 Monate.[3.3i] für on-shore Anlagen. Bei off-shore Anlagen ist die Energierücklaufzeit naturgemäß höher und beträgt zwischen 7-9 Monate. [https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Recycling von alten Anlagen

Fraunhofer IWES windenergie report deutschland 2013: „Special Report Recycling von Windenergieanlagen“:
http://windmonitor.iwes.fraunhofer.de/img/SR_2013_Recycling_von_Windenergieanlagen.pdf
Bis auf die Rotorblätter ist bei allen Bestandteilen einer Windkraftanlage eine stoffliche Verwertung problemlos möglich.
Bei den Rotorblättern erfolgt derzeit eine thermische Verwertung. Es gibt jedoch bereits verschiedene Projekt zur stofflichen Verwertung der Rotorblätter.

http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/2014-Kurzanalyse-VDI-ZRE-09-Ressourceneffizienz-Windenergieanlagen.pdf]
[http://windenergie.ressource-deutschland.de/recycling/hochwertiges-recycling-von-rotorblaettern/

Gesundheitliche Auswirkungen

Von Windkraftgegnern wird immer wieder auf die Gefahr von Infraschall der durch Windkraftanlagen erzeugt wird verwiesen.
Infraschall ist Schall unter der Hörschwelle von 20 Hertz.
Infraschall ist ein Phänomen das sowohl natürliche Ursachen (z.B. Wind, Meeresrauschen) als auch künstliche Ursachen (z.B. Autoverkehr, Kühlschrankkompressor) haben kann.

Die Physikalisch technische Bundesanstalt in Braunschweig hatte vor einem Jahr eine Untersuchung gemacht, in der sie gezeigt hat, dass ein Teil der Probanden von Infraschall belastet wurde. Sie hat weiteren Forschungsbedarf formuliert.

In Deutschland werden die Grenzwerte einer Belastung durch Schall in der Technischen Anleitung Lärm (TA Lärm) geregelt. [3.3l] Die darin festgelegten Grenzwerte müssen auch von Windkraftanlagen eingehalten werden. Eine Messung des Infraschalls ist darin bisher nicht vorgegeben. das ist aber inzwischen eine Forderung. www.windwahn.de ist eine Plattform der Gegner mit sehr viel Information zum Thema.

Auswirkungen auf die Tierwelt

Bei den negativen Auswirkungen auf die Tierwelt stehen Vögel und Fledermäuse im Vordergrund.
Oft werden von Windkraftgegnern die Windkraftanlagen auch als Vogelschredder bezeichnet. [3.3f]
Auch wenn bei der staatlichen Vogelschutzwarte Brandenburg versucht wird, die durch Windkraftanlagen getöteten Vögel zu erfassen, gibt es keine verlässlichen Zahlen. [3.3m] Die Ursache dafür ist, dass es keine systematische Erfassung gibt. Für Greifvögel gibt es eine aufschlussreiche Studie des Michael-Otto-Institut über Windkraft und Greifvögel. [3.3n] Diese geht auch auf die Möglichkeiten der Vergrämung von Vögeln ein durch entsprechende Maßnahmen ein.
Bei der Diskussion über die Tötung von Vögeln durch Windkraftanlagen werden auch die Todesfälle durch andere Gefährdungen übersehen. Durch den Straßenverkehr und an Hochspannungsmasten werden in Deutschland jährlich jeweils 5 bis 10 Millionen Vögel getötet.
Ebenso werden die Todesfälle durch andere Energieerzeugungsanlagen nicht gesehen. In einer Metastudie aus den USA wurde aufgezeigt, dass durch Kohlekraftwerke je GWh fast 20mal so viele Vögel getötet werden als durch Windkraftanlagen. [3.3o]

Bei Fledermäusen ist die Datenlage noch schlechter. Dies liegt sicher daran, dass sie hauptsächlich nachtaktiv und klein sind. Auch hier versucht die staatliche Vogelschutzwarte Brandenburg die durch Windkraftanlagen getöteten Fledermäuse zu erfassen. [2.3m] Eine Bedrohung ist bei Fledermäusen jedoch nur bei hochfliegenden Arten gegeben. Zum Beispiel bei den Wanderungen des Großen Abendseglers (Nyctalus Noctula). Bei allen Fledermäusen muss jedoch berücksichtigt werden, dass die größte Bedrohung die Einschränkungen ihres Lebensraumes und ihrer Nahrungsgrundlage durch die moderne Landwirtschaft ist. Auch sind keine Daten verfügbar wie viele Fledermäuse durch den Straßenverkehr und an Hochspannungsmasten getötet werden.

Zukünftige Weiterentwicklung der Windkraftanlagen

Bei der Weiterentwicklung der Windkraftanlagen sind 2 Tendenzen zu beobachten. Zum einen geht die Entwicklung hin zu immer größeren Anlagen, speziell auch für den offshore Bereich. Zum anderen werden Anlagen für schwächere Windverhältnisse entwickelt und auf den Markt gebracht.
Die aktuellen Ausbaupläne sehen sowohl einen verstärkten Ausbau von offshore Anlagen als auch von on-shore Anlagen vor allem in Norden Deutschlands vor.
Offshore Anlagen sind industrielle Großanlagen die nur von Großkonzernen errichtet werden können und große Mengen von Strom an einem Punkt liefert. Diese entsprechen von ihrer strukturellen Bedeutung her heutigen fossilen Großkraftwerken. Sie stehen deshalb im Widerspruch zu einer dezentralen Energieversorgung. Für den Transport des erzeugten Stromes ist ein weiterer Ausbau der Übertragungsnetze erforderlich. Offshore Anlagen sind außerdem die mit Abstand teuerste Art von erneuerbaren Energien. Deshalb wird der weitere Ausbau dieser Anlagen nach hinten gestellt.

Der weitere Ausbau von onshore ist derzeit vor allen im Norden geplant. Dies steht im Widerspruch zu einer dezentralen Energieversorgung und es verleitet durch lukrative Vergütungsgarantien zum Ausbau von Übertragungsnetzen, um erzeugten Strom vielleicht in den Süden zu transportieren an Stelle des Aufbaus einer dezentralen Speicherinfrastruktur, die dortige Überschüsse zeitlich verschieben.

Der Ausbau der Übertragungsnetze verursacht erhebliche Kosten und ist, wie man am Widerstand gegen die HGÜ Trassen sieht, der Bevölkerung so gut wie nicht vermittelbar.
Deshalb sollte ein weiterer Ausbau von Windkraftanlagen nur dezentral erfolgen. Diese Art des Ausbaus würde auch Bürgerenergiegenossenschaften Möglichkeiten bieten Bürgerwindräder zu errichten.
Aber auch der dezentrale Ausbau von Windkraftanlagen sollte nur mit entsprechender Bürgerbeteiligung erfolgen. Dies wird zu einer Reduzierung des zukünftigen Ausbaus führen.
Insgesamt sehen wir deshalb für das Jahr 2050 eine Erzeugungskapazität von 200 TWh durch Windkraftanlagen.
Eine Übersicht über aktuelle Forschungsprojekte finden sich hier: http://windenergie.ressource-deutschland.de/

Quellen und weitere Informationen:

[3.3a] https://www.wind-energie.de/sites/default/files/attachments/page/statistiken/20160127-factsheet-status-windenergieausbau-land-jahr-2015.pdf
[3.3b] https://www.wind-energie.de/sites/default/files/attachments/page/statistiken/factsheet-status-offshore-windenergieausbau-jahr-2015.pdf
[3.3c] https://www.wind-energie.de/infocenter/statistiken/deutschland/entwicklung-der-windstromeinspeisung
[3.3d] http://www.gesetze-im-internet.de/eeg_2014/
[3.3f] http://www.windwahn.de/
[3.3g] http://bayrvr.de/2014/11/20/gvbl-192014-gesetz-zur-aenderung-der-bayerischen-bauordnung-baybo-und-des-gesetzes-ueber-die-behoerdliche-organisation-des-bauwesens-des-wohnungswesens-und-der-wasserwirtschaft-orgbauwasg-ver/
[3.3h] http://www.br.de/mediathek/video/sendungen/nachrichten/windkraft-windraeder-bayern-100.html#&time=
[3.3i] http://www.vdi-nachrichten.com/artikel/Mehr-Windkraft-an-Land-rueckt-Oekologie-ins-Blickfeld/54733/1
[3.3j] http://www4.lubw.baden-wuerttemberg.de/servlet/is/229961/
[3.3k] http://www4.lubw.baden-wuerttemberg.de/servlet/is/250786/
[3.3l] http://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_26081998_IG19980826.htm
[3.3m] http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.312579.de
[3.3n] https://bergenhusen.nabu.de/forschung/windkraft-und-greifvoegel/index.html
[3.3o] http://www.sciencedirect.com/science/article/pii/S0960148112000857

https://de.wikipedia.org/wiki/Windkraftanlage
http://www.eurobserv-er.org/category/barometers-in-german/
http://ressourcen.wupperinst.org/downloads/MaRess_AP2_4.pdf
http://www.sciencedirect.com/science/article/pii/S0960148111002254
http://www.inderscience.com/offer.php?id=62496
http://www4.lubw.baden-wuerttemberg.de/servlet/is/223628/windenergie_und_infraschall.pdf?command=downloadContent&filename=windenergie_und_infraschall.pdf

Fraunhofer IPA: „Analytische Untersuchung zur Ressourceneffizienz“, April 2015
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

http://windenergie.ressource-deutschland.de/
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 50ff
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

4.1.6 Stromerzeugung mit Photovoltaikanlagen

PV Anlagen nutzen den photoelektrischen Effekt zur direkten Umwandlung von Licht in elektrische Energie. Die ersten Einsätze erfolgten ab Ende der 1950iger Jahre bei Satelliten – und deren PV-Zellen funktionieren noch heute.

Während Solarzellen ursprünglich aus monokristallinem Silizium gefertigt wurden sind inzwischen auch polykristalline bzw. amorphe Solarzellen verfügbar. Auch konnten die Wirkungsgrade deutlich gesteigert werden. Inzwischen sind Wirkungsgrade von bis zu 26 Prozent bei kommerziellen Solarzellen üblich. In Entwicklungslaboren wird bereits an Solarzellen mit Wirkungsgraden von über 40 Prozent gearbeitet. [3.4a]

Dadurch, dass PV Anlagen von der Sonneneinstrahlung abhängig sind können sie nicht kontinuierlich Strom produzieren. Die Bundesnetzagentur rechnet für PV Anlagen mit einer gesicherten Leistung von 0 Prozent. Dies wird damit begründet, dass PV Anlagen in der Nacht keinen Strom produzieren können. Welche Logik steckt dahinter? Was hat dies mit der Realität zu tun? Auch Windräder haben Stillstandszeiten. Die gesicherte Leistung kann in Kombination mit Akkuspeichern ohne weiteres mit 15% angesetzt werden. Dieser Umstand wird von Kritikern gerne angeführt um die Untauglichkeit der Stromerzeugung durch PV Anlagen zu postulieren. [3.4b] Oft wird hierbei auch mit dem Begriff „Flatterstrom“ gezielt Gegnerschaft erzeugt. Für die Sicherung einer kontinuierlichen Stromversorgung ist deshalb eine Kombination mit
entsprechenden Speichertechnologien erforderlich.

In Deutschland waren Ende 2015 PV Anlagen mit einer Nennleistung von 39.7 MW installiert. [3.4c]
Diese speisten 2015 insgesamt 38.5 GWh Strom ins deutsche Netz ein. [3.4d] Die Verteilung der PV Anlagen in Deutschland ist jedoch nicht gleichmäßig. Da im Süden die Sonneneinstrahlung höher ist, sind diese überwiegend in den südlichen Bundesländern installiert.

Der weitere Ausbau von PV Anlagen ist durch die EEG Novelle 2014 stark abgebremst worden. Besonders der Ausbau von Freiflächenanlagen ist seit Ausschreibungsmodell stark zurückgegangen. Die „genehmigten“ Zubauziele werden nicht erreicht. [3.4e]

Zum Schutz der europäischen Hersteller von Solarmodulen werden auf chinesische Solarmodule Strafzölle erhoben. Dies geschah vor allem auf Betreiben von deutschen Herstellern wegen angeblicher Dumpingpreise. Ergebnis war eine Verteuerung von Solarmodulen im EU-Raum gegenüber dem Weltmarkt, ein Absinken der Rentabilität und letztlich die Pleite des größten Anstifters solcher Ideen., den deutschen Bestandteilen von Solarworld. [3.4f]]

Ökologische Betrachtung

Bei der ökologischen Betrachtung sind drei Faktoren zu berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch für die PV Module
3. Recycling von alten PV Modulen

Flächenbedarf
Der Flächenbedarf für die Erzeugung von elektrischer Energie durch PV Module wird oft als zu hoch für die Bundesrepublik Deutschland dargestellt. Horrordarstellungen von einem durch PV Module überdachten Deutschland werden verbreitet. Doch wie ist es wirklich?
Die Bundesrepublik Deutschland hat eine Gesamtfläche von 357.375 Quadratkilometern.
In den oben berechneten Szenarien zur Stromerzeugung ergibt sich bei einem Wirkungsgrad von 20% Prozent ein Flächenbedarf von 3.610 Quadratkilometern bzw. 5.502 Quadratkilometern. Ein Wirkungsgrad von 20% erscheint als sehr konservative Abschätzung für das Jahr 2050, da er der bereits heute verfügbaren Technologie entspricht. Es wären also nur 1% bis 1,5% der Fläche Deutschlands für die Stromerzeugung durch PV Module benötigt.
Laut dem Statistischen Bundesamt waren im Jahr 2014 insgesamt 19.205 Quadratkilometer durch Wohn-, Gewerbe- und Betriebsflächen belegt. [3.4d] Dies bedeutet, dass man je nach Szenario 18% bzw. 28% Prozent der bereits durch Gebäude überbauten Fläche benötigt um den gesamten benötigten Strom zu erzeugen.
Nicht berücksichtigt ist dabei der Effekt durch andere Arten der PV Nutzung, wie z.B. PV Module an Gebäudefronten, Solarwege, PV Module an Schallschutzwänden, usw. Dadurch werden die benötigten Dachflächen reduziert. Eine genaue Abschätzung der Reduktion ist aber derzeit nicht möglich.

Umweltbundesamt:

„Entsprechend der UBA-Studie „Energieziel 2050“ wird von einem mittleren Jahresnutzungsgrad von 17% und 1.620 km2 verfügbare Fläche ausgegangen. Dies bedeutet, dass für jedes installierte Kilowatt (kW) an Leistung 5,88 m2 Fläche benötigt werden. Würde man die gesamte Fläche mit Solarmodulen belegen, so stände eine installierte Leistung von 275 Gigawatt (GW) zur Verfügung. Bei den
Flächenangaben handelt es sich um Dach- und Fassadenflächen sowie sonstige Siedlungsflächen wie Parkplatzüberdachungen oder Lärmschutzwände. Die Nutzung von Freiflächen wie Konversionsflächen, Ackerflächen oder Grünland sind hier nicht berücksichtigt. Unter der Annahme von 900 Volllaststunden ergäbe sich ein jährlicher Stromertrag von ca. 248 TWh. Bei dieser solaren Flächenermittlung handelt es sich um eine konservative Potenzialbewertung. Ob dieses Potenzial ausgeschöpft werden kann, hängt von verschiedenen Faktoren wie der Akzeptanz in der Bevölkerung, politischer Weichenstellungen, der Wirtschaftlichkeit der PV-Anlagen und der Systemintegration des Solarstroms ab. Falls die Flächenpotenziale auf Konversionsflächen, Ackerflächen oder Grünland erschlossen werden, können auch noch größere installierte Leistungen von Photovoltaikanlagen in Deutschland realisiert werden.“ [Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 52,

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

„Runder Tisch Energiewende Niedersachsen“ hat eine aktuelle Analyse der Dachflächen in Niedersachsen gemacht. Hochrechnen auf das gesamte Bundesgebiet auf Basis der Bevölkerungsverteilung?! [Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050 – Gutachten – http://www.umwelt.niedersachsen.de/download/106468, April 2016, Seite 20f]

Rohstoffverbrauch für die PV Module
Für 1 GW Leistung:
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 51f
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

PV Module bestehen hauptsächlich aus den folgenden Komponenten:

1. Glasscheiben
Glas ist ein Schmelzprodukt das hauptsächlich aus Quarzsand, Soda und Pottasche besteht. Dies alles sind Rohstoffe, die häufig in der Natur vorkommen bzw. aus häufig vorkommenden Elementen synthetisiert werden. Somit besteht keine Gefahr von Ressourcenengpässen die die Fertigung von PV Modulen einschränken.

2.Alurahmen
Aluminium kommt in der Erdkruste sehr häufig vor. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten.

Aluminium als elementares Metall und Material verfügbar zu machen erfordert zwar einen hohen Energieeinsatz. Aber einmal produziert kann es sehr einfach recycelt werden und dient in Form von Lagerware als Barren sogar als indirekter Energiespeicher für Überschussstrom.

3. Solarzellen
Solarzellen werden aus Silizium gefertigt. (Silizium ist das zweithäufigste Element der Erdkruste. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten).

4. Kupferverbindungen
Kupfer kommt in der Erdkruste sehr häufig vor. Somit besteht keine Gefahr von Ressourcenengpässen, die die Fertigung von PV Modulen einschränken.

5.Kunststoffdichtungen bzw. Folien
Kunststoffdichtungen bzw. Folien werden heute aus Erdöl gewonnen.

Die Herstellung der Hauptkomponenten eines PV Moduls ist relativ energieintensiv. Jedoch wird im Laufe der Lebensdauer der PV Module deutlich mehr elektrische Energie erzeugt. Die Energierücklaufzeit, also die Zeit in der die für die Herstellung verbrauchte Energie wiedergewonnen ist beträgt heute ca. 1 Jahr. Quelle?

Recycling von alten PV Modulen
Beim Recycling von alten PV Modulen können heute über 90 Prozent der verwendeten Materialien wiedergewonnen werden und erneut in den Produktionsprozess eingebracht werden.
Das Recycling von Glas, Alu, Silizium und Kupfer ist eine bewährte Technik und auch von der Ökobilanz ein her gesehen sehr positiv.
Heute existiert keine bewährte Technik für das Recycling der Kunststoffdichtungen bzw. Folien die ja fest mit den Glasscheiben bzw. Solarzellen laminiert sind.

Was wir noch genauer betrachten sollten:

– Wieviel Rohstoff in g ist in einem Modul enthalten?
– Wie viele Module brauchen wir für die solare Stromerzeugung in Deutschland?
– Groß sind jeweils die weltweiten Rohstoffreserven?
Dann ist es nicht nur eine pauschale Aussage, sondern berechnet, dass ausreichend Rohstoffreserven vorhanden sind.

Die gleiche Rohstoff-Betrachtung dann für die Windkraftanlagen.

Das ist auch wichtig, weil insbesondere bei Windkraftanlagen manchmal eine Rohstoffknappheit ins Feld geführt wird.

Zukünftige Weiterentwicklung der PV Nutzung

Für die Zukunft ist eine weitere Zunahme der PV Nutzung zu erwarten, obwohl laut aktuellen EEG der weitere geförderte Zubau eingeschränkt wurde. [3.4e]

Durch weitere Verbesserungen der Produktionstechnik sind auch in Zukunft Kostenreduktionen bei der Herstellung von PV Modululen zu erwarten. Kurzfristig von Bedeutung ist hierbei der Ausgang des Anti-Dumping-Verfahren gegen China. [3.4f] Diese künstliche Verteuerung wird jedoch langfristig nicht durchzuhalten sein. [3.4g]
Langfristig werden auch PV Module, die nicht auf Silizium basieren, auf den Markt kommen.
PV Module auf Basis von Galliumarsenid bzw. Galliumindiumphosphid / Galliumindiumarsenid bieten einen deutlich höheren Wirkungsgrad als siliziumbasierte PV Module. Momentan sind sie jedoch noch zu teuer oder erst als Labormuster verfügbar.
Auch organische PV Module und Perowskit-Module bilden momentan ein erfolgversprechendes Forschungsgebiet.[3.4h]
Langfristig ist jedoch mit der Marktreife entsprechender Module zu rechnen.
Für die Aufstellung von PV Anlagen bietet sich, wie bereits oben erwähnt, ein breites Zukunftspotential. Zum Beispiel Solarwege. [3.4i] [3.4j]. Dies würde zu einer Reduzierung der oben angeführten Fläche führen.
Auch die Überdachung von Verkehrswegen bietet eine interessante Option, da im Nebeneffekt Schneeräumung im Winter und Fahrzeugklimatisierung im Sommer deutlich geringer ausfallen. ICEs, die sich nicht in der prallen Sonne auf 50 °C und mehr aufheizen, sondern weitgehend im Schatten fahren, erleiden auch keinen Ausfall der Klimaanlagen mehr.
PV Anlagen stellen insgesamt betrachtet die umweltverträglichste Form von erneuerbaren Energien da. Die Akzeptanz in der Bevölkerung ist ebenfalls sehr hoch. Deshalb sollten sie auch die Hauptlast der zukünftigen Stromversorgung tragen.

Übersicht Rohstoffverfügbarkeit weltweit:
B.U.N.D. Hintergrundpapier: „Ressourcenschutz ist mehr als Rohstoffeffizienz“, Juli 2015 http://www.bund.net/pdf/ressourcenschutz

Powershift: Rohsto¬ffe für die „grüne“ Wirtschaft, 2011
http://power-shift.de/wordpress/wp-content/uploads/2011/08/PowerShift-ForumUE-StudieRohstoffe-Gr%C3%BCneWirtschaft-2011web_klein.pdf

Quellen und weitere Informationen:

[3.4a] http://photovoltaik-vision.de/05-2013/forschung-vierfach-stapelsolarzelle-mit-436-prozent-wirkungsgrad/
[3.4b] http://www.eike-klima-energie.eu/
[3.4c] https://www.energy-charts.de/power_inst_de.htm
[3.4d] http://www.statistischesbundesamt.de/
[3.4e] http://www.gesetze-im-internet.de/eeg_2014/
[3.4f] http://photovoltaik-vision.de/08-2013/preisdumping-eu-einigt-sich-endgultig-mit-china/
[3.4g] http://safe-eu.org/2016/04/19/pm-solarmodule-koennten-hierzulande-20-preiswerter-sein/?utm_source=newsletter&utm_medium=email&utm_campaign=PHOTON+Newsletter+-+Deutsche+Ausgabe+vom+20.4.2016+&newsletter=PHOTON+Newsletter+-+Deutsche+Ausgabe+vom+20.4.2016+
[3.4h http://www.iwr.de/news.php?e=x0616x&id=30643
[3.4i] hhttps://www.indiegogo.com/projects/solarlayer-every-surface-is-a-solar-panel#/
[3.4j] http://www.mein-elektroauto.com/2016/02/frankreich-will-1-000-kilometer-strassen-mit-solarzellen-ausstatten/19828/

https://de.wikipedia.org/wiki/Photovoltaik
http://www.eurobserv-er.org/category/barometers-in-german/
http://www.sma.de/unternehmen/pv-leistung-in-deutschland.html
http://www.oeko-energie.de/produkte/solarstrom-photovoltaik/solarmodule/index.php#04a2089a240b63601
http://www.bvmw.de/politik/energie.html
https://de.wikipedia.org/wiki/Solarmodul
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 52
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf, Abschätzung ohne Freiflächen

4.1.7 Vergleich Photovoltaik und Windkraft

Vergleiche:

Rohstoffeinsatz 1 MW Photovoltaik/1 MW Windkraft (onshore)
kurzer Hinweis auf höheren Rohstoffeinsatz für offshore durch Umspannwerke auf See und an Land und seeseitige zusätzlich Stromkabel/ höherer energetischer Aufwand da Materialien und Personal aufs Meer geschafft werden müssen

Bewertung/Schlussfolgerungen für die (unsere) Verteilung der Stromerzeugungskapazität auf Photovoltaik und Windkraft

Zukünftige Stromerzeugung in Deutschland

Im Jahr 2050 ergibt sich ein Gesamtbedarf an elektrischer Energie von 1300 TWh.
Diese Energie soll zu 100% aus erneuerbaren Quellen stammen.
Als Quellen dafür kommen Wasserkraft, Biogas, Biomasse, Windkraftanlagen und Photovoltaikanlagen (PV Anlagen) in Betracht.
Technologien, die derzeit in Deutschland ihre Einsatzfähigkeit bzw. Marktreife noch nicht bewiesen haben werden nicht berücksichtigt. Dies ist zwar ein extrem konservativer Ansatz, jedoch befindet man sich damit auf der sicheren Seite und macht sich nicht von Entwicklungsfortschritten abhängig, die möglicherweise nicht eintreten.
Wie weiter oben beschrieben werden für Wasserkraft, Biogas, Biomasse die folgenden Erzeugungskapazitäten angenommen.
Wasserkraft: 22,7 TWh
Biogas: 5,5 TWh
Biomasse: 2 TWh
Summe: 30,2 TWh
Somit müssen noch 1.270 TWh durch PV- und Windkraftanlagen erzeugt werden.
Bei beiden ist jedoch auf Grund der Fluktuation bei der Erzeugung eine Speicherung von Strom notwendig.
Die wichtigste Grundsatzentscheidung für die zukünftige Stromversorgung ist deshalb welchen Anteil PV- und Windkraftanlagen an der Produktion haben sollen.
Neben technischen und ökonomischen Faktoren spielen dabei auch sog. soft skills wie z.B. Akzeptanz in der Bevölkerung eine Rolle.
Technisch gesehen handelt es sich sowohl bei Windkraftanlagen als auch bei PV Anlagen um Systeme die ihre Einsatzreife bereits seit längerer Zeit unter Beweis gestellt haben. Zudem gibt es bei beiden noch Entwicklungspotential, sowohl bei der Technologie als auch bei der Optimierung in der Produktion.

Für eine Beurteilung zur Priorisierung der Erzeugungssysteme PV- und Windkraftanlagen dient die folgende Tabelle. Bei der Bewertung wird zwischen PV Anlagen, offshore Windkraftanlagen und onshore Windkraftanlagen unterschieden.

PV Anlagen on shore Windkraftanlagen off shore Windkraftanlagen
Verfügbarkeit von
Rohstoffen problemlos problemlos problemlos
Recycling problemlos problemlos problemlos
Gesellschaftliche
Akzeptanz hoch umstritten umstritten
Flächenbedarf hoch – gering gering
Energetische
Amortisation schnell schnell schnell
Ökologische
Auswirkungen gering mittel hoch
Kosten mittel mittel hoch
Gesundheitliche
Auswirkungen keine unbestimmt unbestimmt

Bei Windkraftanlagen ist bei einer ökonomischen Betrachtung zwischen on shore und off shore Anlagen zu unterscheiden. Off shore Windkraftanlagen produzieren derzeit den teuersten erneuerbaren Energiestrom, während on shore kostengünstig Strom produziert wird.
PV Anlagen produzieren ihren Strom ebenfalls kostengünstig.
Bei den soft skills gibt es deutliche Unterschiede zwischen PV- und Windkraftanlagen.
Der Protest gegen Windkraftanlagen nimmt immer mehr zu. Oft wird dabei auch die Energiewende insgesamt auch in Frage gestellt.
Dagegen gibt es bei der Errichtung von PV Anlagen nur sehr selten Proteste.
Daraus zu folgern, man sollte nur noch PV Anlagen bauen wäre jedoch nicht zielführend.
Jedoch kann man daraus folgern, dass für eine breite Akzeptanz der Energiewende verstärkt auf den Ausbau von PV Anlagen gesetzt werden soll. Dies wird auch von uns gefordert und deshalb wird bei der Stromproduktion im Jahr 2050 von 1.000 TWh Strom aus PV Anlagen und 270 TWh Strom aus Windkraftanlagen ausgegangen.

4.1.8 Verfügbarkeit von Rohstoffen

Die weltweiten Bauxitvorkommen werden auf 55 bis 75 Milliarden Tonnen geschätzt. Im Jahr 2015 wurden 58,3 Millionen Tonnen Aluminium daraus geschmolzen. [http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2016-alumi.pdf]

Silizium ist das zweithäufigsten Elemente der Erdkruste [https://de.wikipedia.org/wiki/Liste_der_H%C3%A4ufigkeiten_chemischer_Elemente#H.C3.A4ufigkeiten_auf_der_Erde]. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten.

Die weltweiten Kupfervorkommen werden auf 5,6 Milliarden Tonnen geschätzt. Im Jahr 2015 wurden 18,7 Millionen Tonnen Kupfer abgebaut. [http://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2016-coppe.pdf]

Die weltweiten Eisenvorkommen werden auf 230 Milliarden Tonnen geschätzt. [http://minerals.usgs.gov/minerals/pubs/commodity/iron_ore/mcs-2016-feore.pdf]

Die weltweiten Vorkommen an Seltenen Erden werden auf 130 Millionen Tonnen geschätzt. Im Jahr 2015 betrug die Produktion 124.000 Tonnen. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2016-raree.pdf

Beton besteht aus Gesteinskörnung; Sand und Kies und Zement als Bindemittel.
Durch die Zugabe von Wasser reagiert der Zement und es entsteht ein festes Baumaterial.
Jährlich werden in Deutschland 250 Millionen Tonnen Beton verbaut. Die Menge an Betonabfällen beträgt 130 Millionen Tonnen. http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
In der Regel erfolgt das Recycling durch Schreddern des Betonabfalls. Jedoch gibt es bereits Projekte den Beton wieder in Gesteinskörnung und Zementmasse zerlegen. Damit sind Recyclingquoten von 80% möglich. http://www.fraunhofer.de/de/presse/presseinformationen/2012/oktober/blitz-schlag-ein.html

Der damit hergestellte RC-Beton entspricht den entsprechenden Normen http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
Auch für den in der Herstellung sehr energieintensiven Zement wird nach Ersatzstoffen gesucht. http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
Jedoch ist bei den Rohstoffen für die Zementherstellung kein Mangel zu erwarten. http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2016-cemen.pdf
All diese Verbesserungen bei der Betonherstellung kommen auch den Betonbestandteilen von Windkraftanlagen zu Gute.

Für den Bau von Windkraftanlagen off shore werden die folgenden Materialien benötigt:
▸ ca. 101.000 t Beton,
▸ 144.000 t Eisen und Stahl,
▸ darunter mindestens 1.800 t Nickel, Chrom, Molybdän und Mangan
▸ 11.000 t größtenteils glasfaser- oder carbonfaserverstärkte Kunststoffe,
▸ 3.000 t Kupfer und
▸ bis zu 200 t an Seltenen Erden.
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf
Laut derselben Quelle werden für Anlagen an Land ähnliche Rohstoffmengen benötigt. Jedoch werden geringe Stahlmengen und dafür höhere Betonmengen benötigt.
Diese Studie geht davon aus dass bei den Generatoren Synchrongeneratoren mit Permanenterregung eingesetzt werden, die Seltene Erden benötigen.
In https://epub.wupperinst.org/frontdoor/index/index/docId/5883 werden jedoch auch Szenarien vorgestellt die von einem erheblichen Anteil von Generatoren ohne Seltene Erden ausgehen.

Kritische Rohstoffe beim Windenergieausbau

Fraunhofer IWES: windenergie report Deutschland 2014; 2015
http://windmonitor.iwes.fraunhofer.de/opencms/export/sites/windmonitor/img/Windenergie_Report_2014.pdf, Seite 70ff; bezieht sich auf die Studie des Wuppertal-Institutes

Zusammenfassend kann man feststellen, dass der Bau von Windkraftanlagen nicht durch Ressourcenengpässe begrenzt wird.

Quellen und weitere Informationen:

Übersicht Rohstoffverfügbarkeit weltweit:
B.U.N.D. Hintergrundpapier: „Ressourcenschutz ist mehr als Rohstoffeffizienz“, Juli 2015 http://www.bund.net/pdf/ressourcenschutz

Powershift: Rohsto¬ffe für die „grüne“ Wirtschaft, 2011
http://power-shift.de/wordpress/wp-content/uploads/2011/08/PowerShift-ForumUE-StudieRohstoffe-Gr%C3%BCneWirtschaft-2011web_klein.pdf

4.1.9 Der Anteil von Sonne und Wind an der zukünftigen Stromerzeugung

Für den Ausbau der Stromerzeugung durch erneuerbare Energien wurde ein Simulationsmodell erstellt. Dieses ermittelt die für Windkraftanlagen und PV Anlagen notwendigen Ausbauziele an Erzeugungsanlagen sowie den Bedarf an Speichermöglichkeiten, um Dunkelheit und Flauten zu überbrücken und damit eine kontinuierliche und bedarfsgerechte Stromversorgung zu gewährleisten.

Die Sonneneinstrahlung in Deutschland lässt sich relativ einfach mathematisch bestimmen. Die Solarkonstante und die Breitengrade von Deutschland sind bekannt. Diese mathematische Methode berücksichtigt jedoch nicht die meteorologischen Phänomene (z.B. Wolken, Nebel, usw.) und liefert systematisch zu hohe Werte.
Deshalb wurde ein anderer Ansatz zur Bestimmung der Sonneneinstrahlung gewählt. Mit Hilfe eines Solarrechners, der meteorologische Phänomene berücksichtigt, also die effektive Sonneneinstrahlung liefert, wird ein Durchschnittsertrag von PV Anlagen ermittelt, der auf mehreren Messpunkten in Deutschland beruht.
Bei den Berechnungen des Flächenbedarfs wird von einem Wirkungsgrad von 16% ausgegangen. Dies entspricht dem heutigen Standard. Daneben wird auch noch der Flächenbedarf bei einem Wirkungsgrad von 20% bzw. 25% berechnet. Diese Wirkungsgrade erscheinen für das Jahr 2050 durchaus möglich, da bereits heute in den Entwicklungslaboren Wirkungsgrade über 40% erreicht werden.
Eine Erhöhung des Wirkungsgrades, die auf Grund der technischen Weiterentwicklung zu erwarten ist, wird den Flächenbedarf reduzieren.
Der benötigte Speicherbedarf bei den einzelnen Szenarien ist jedoch unabhängig vom Wirkungsgrad der verwendeten Solarzellen.
In der folgenden Grafik sind die durchschnittlichen Erträge pro Monat aufgeführt.

Diese Werte bilden die Grundlage für alle folgenden Berechnungen der Stromerzeugung durch PV Module.

Bei der Stromerzeugung durch Windkraftanlagen lässt sich kein mathematisches Modell verwenden. Deshalb wurde die durch Windkraftanlagen im Jahr 2013 erzeugte Energie als Basis für die Berechnungen verwendet.
In der folgenden Grafik sind die Erträge pro Monat aufgeführt.

Diese Werte bilden die Grundlage für alle folgenden Berechnungen der Stromerzeugung durch Windkraftanlagen.

Stromerzeugung nach dem derzeitig gültigen EEG (Erneuerbaren Energiegesetz)

Nach dem derzeit gültigen EEG ist bei PV Anlagen eine weiterer, geförderter Ausbau von 2.500 MW Peak Leistung pro Jahr geplant. Dies bedeutet gegenüber den tatsächlichen Neuinstallationen der letzten Jahre eine deutliche Reduzierung.
Wenn sich an den gesetzlichen Grundlagen nichts ändert und der Ausbau planmäßig erfolgt dann würde dies bis 2050 einen Zubau von 87.500 MW bedeuten. Wenn alle heute existierenden PV Anlagen noch existieren bzw. ersetzt werden würde dies einen Gesamtbestand von 125.800 MW PV Leistung ergeben.

Damit würde sich die im folgenden Bild dargestellte Strommenge erzeugen lassen.

Nach dem derzeit gültigen EEG ist auch bei Windkraftanlagen ein weiterer geförderter Ausbau von 2.500 MW Nennleistung pro Jahr geplant.
Wenn sich an den gesetzlichen Grundlagen nichts ändert und der Ausbau planmäßig erfolgt dann würde dies bis 2050 einen Zubau von 87.500 MW bedeuten. Wenn alle heute existierenden Windkraftanlagen noch existieren bzw. ersetzt werden würde dies einen Gesamtbestand von 132.100 MW Leistung durch Windkraftanlagen ergeben.

Damit würde sich die im folgenden Bild dargestellte Strommenge erzeugen lassen.

Wie man in obigen Bildern sieht ist damit im Jahresdurchschnitt nur rund die Hälfte des derzeitigen Strombedarfs von 614 TWh gedeckt.
Für die PV Anlagen würde bei einem angenommen durchschnittlichen Wirkungsgrad von 16% eine Fläche von 782 Quadratkilometern benötigt um die EEG Zielvorgaben für den Ausbau zu erreichen. Bei einem für die Zukunft angenommen durchschnittlichen Wirkungsgrad von 20% bzw. 25% würde sich der Flächenbedarf auf 626 bzw. 500 Quadratkilometern reduzieren.
Diese Zahlen erscheinen auf den ersten Blick zwar sehr hoch, wenn man jedoch die Gesamtfläche der Bundesrepublik, 357.375 Quadratkilometer, dazu in Relation setzt, ist der Bedarf äußerst gering.

4.1.10 Die Landkarte der Stromerzeugung

Im Teilprojekt „„C/sells: Großflächiges Schaufenster im Solarbogen Süddeutschland“ des Bundesprojektes „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ wird genau diese Fragestellung untersucht:
„Das Schaufenster „C/sells“ überspannt im Süden Deutschlands die Bundesländer Baden-Württemberg, Bayern und Hessen und hat den Schwerpunkt „Solarenergie“… Kern des Schaufensters ist die Demonstration eines zellulär strukturierten Energiesystems, in dem regionale Zellen im überregionalen Verbund miteinander agieren. Die Größe der Zellen ist dabei sehr unterschiedlich. So können einzelne Liegenschaften oder ganze Verteilnetze solche Zellen bilden. Jede Zelle versorgt dabei subsidiär zunächst sich selbst, indem Energieerzeugung und Last möglichst direkt vor Ort ausgeglichen werden. Die verbleibenden Energiebilanzen werden dann mit anderen Zellen ausgetauscht, um so das Energiesystem insgesamt zu optimieren. Durch den Zellverbund entsteht dadurch eine effiziente und robuste Energieinfrastruktur.“ http://www.bmwi.de/DE/Themen/Energie/Netze-und-Netzausbau/sinteg.html)

4.2 Zukünftige Wärmeerzeugung in Deutschland

4.2.1 Tiefengeothermie

Der mögliche Beitrag der tiefen Geothermie zu einer nachhaltigen Energieversorgung wurde umfassend für einen Sachstandsbericht des Büros für Technikfolgen-Abschätzung (TAB) beim Deutschen Bundestag untersucht. Unter Berücksichtigung ökologischer, raumordnerischer und technischer Restriktionen wurde daraus das bis 2050 erschließbare technisch-ökologische Potenzial der geothermischen Stromerzeugung in Deutschland bestimmt. Im Jahr 2050 könnte demnach eine installierte Netto-Leistung geothermischer Anlagen von 6,4 Gigawatt elektrisch realisiert werden. Damit könnten ca. 50 TWh/a grundlastfähiger Strom erzeugt werden. Dieses Potenzial ist in Deutschland umweltverträglich erschließbar, positive Umwelteffekte lassen sich ebenfalls mit geothermischer Wärmeversorgung erzielen. [Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 53 https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Rentabel unter volkswirtschaftlichen Gesichtspunkten ist diese Technologie allerdings bei weitem nicht.

Der Wärmebedarf in Deutschland lässt sich aus den in Kapitel 2.4 gemachten Ansätzen wie folgt bestimmen:
Private Haushalte: 115,5 TWh
Wirtschaft und Verwaltung: 444,6 TWh
Summe: 560,1 TWh

Beim Wärmebereich muss man zwischen Niedertemperaturbereich und Hochtemperaturbereich unterscheiden.
Energie im Niedertemperaturbereich lässt sich relativ leicht, zum Beispiel durch Solarthermie gewinnen.
[Im Hochtemperaturbereich, zum Beispiel bei der Stahlproduktion ist dies nur sehr eingeschränkt und aufwändig möglich (erfolgreich funktionierende Versuchsanlage in den frz. Pyrenäen). Deshalb muss dieser Temperaturbereich durch Strom bereitgestellt werden.] Konzept für Aluminiumgießerei: Solarturm Jülich: [http://www.kba-metalprint.com/fileadmin/user_upload/MetalPrint/Fachbeitraege/Dynamische_Hochtemperatur-Speicherung_0713.pdf]

4.2.2 Oberflächennahe Geothermie

(Wärmepumpen)

4.2.3 Solarthermie

4.2..4 Strombasierte Wärmeerzeugung

Literaturverweise:

4 Die Erzeugung der Energie von morgen

[4a]
Bundesministerium für Wirtschaft und Energie: Entwicklung der erneuerbaren Energien
in Deutschland im Jahr 2015, Stand Februar 2016, Seite 11 und 7
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12

[4b]
Bundesministerium für Wirtschaft und Energie: Entwicklung der erneuerbaren Energien
in Deutschland im Jahr 2015, Stand Februar 2016, Seite 22 und 8
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12

4.1.2 Stromerzeugung mit Klär- Deponie- und Grubengas

[4.1.2a]
Wupperverband:
http://www.wupperverband.de/internet/web.nsf/id/pa_de_klaergas.html und http://www.mwm.net/mwm-kwk-bhkw/mwm-kompetenzen/gas-loesungen/klaergas/ ]

[4.1.2b]
Wikipedia: Deponiegas
https://de.wikipedia.org/wiki/Deponiegas]

[4.1.2c]
Caterpillar Energy Solutions GmbH: Dezentrale Stromerzeugung mit Deponiegas
http://www.mwm.net/mwm-kwk-bhkw/mwm-kompetenzen/gas-loesungen/deponiegas/

[4.1.2d]
Evonik Industries: Energie aus Grubengas
https://www.steag-newenergies.com/index.php?id=455&type=0&jumpurl=fileadmin%2Fuser_upload%2Fsteag-newenergies.com%2Fprodukte_leistungen%2Fgrubengas%2FDE_Evonik_Grubengasbroschuere.pdf, Seite 4

[4.1.2e]
Foliensatz zur Energie-Info „Erneuerbare Energien und das EEG (2016)“
https://www.bdew.de/internet.nsf/id/20160222-energie-info-erneuerbare-energien-und-das-eeg-zahlen-fakten-grafiken-2016-de?open&ccm=500010045, Folie 2

[4.1.2f]
Interessenverband Grubengas e. V.: NRW – Grubengasverwertungsdaten
http://www.grubengas.de/german/verwertung_g.htm

4.1.4 Stromerzeugung mit Windkraftanlagen auf See

[4.1.4a]
siehe zum Beispiel
Bundesministerium für Wirtschaft und Energie: Broschüre „Offshore-Windenergie“
http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/bmwi_de/offshore-windenergie.pdf?__blob=publicationFile&v=2

[4.1.4b]
Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG 2014), § 49 bis 51
https://www.gesetze-im-internet.de/bundesrecht/eeg_2014/gesamt.pdf
und
Entwurf eines Gesetzes zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien (Erneuerbare-Energien-Gesetz – EEG 2016), § 49 http://bmwi.de/BMWi/Redaktion/PDF/G/gesetzentwurf-ausschreibungen-erneuerbare-energien-aenderungen-eeg-2016,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

[4.1.4c]
Status des offshore-Windenergieausbaus in Deutschland, Stand 31.12.2015, Seite 3
http://www.windguard.de/_Resources/Persistent/6863a8d0ae295aaa0e5e72419395edaf220dc1d0/Factsheet-Status-Offshore-Windenergieausbau-Jahr-2015.pdf

[4.1.4d]
Entwurf eines Gesetzes zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien (Erneuerbare-Energien-Gesetz – EEG 2016), § 4
http://bmwi.de/BMWi/Redaktion/PDF/G/gesetzentwurf-ausschreibungen-erneuerbare-energien-aenderungen-eeg-2016,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 4

Das Orangebuch der Energiepiraten – meine Sicht – Teil 4

3. Die Welt einer nachhaltigen Energieversorgung

Das Leben ist leiser geworden. Fahrräder und Autos surren durch die Straßen. Die Sonne wärmt dunkle Dächer und spiegelt sich schwach in glänzenden Fassaden. Die Rotoren der Windkraftanlagen drehen sich in der Ferne behäbig im lauen Wind. Eine Vision? Nein, die nachhaltige Zukunft.

In die Dächer von Wohnhäusern, öffentlichen Gebäuden und Industriegebäuden sind und Photovoltaikmodule eingelassen, teilweise auch Sonnenkollektoren, große Häuserwände sind mit stromerzeugenden Folien überzogen. [3a] Alleinstehende Gehöfte und Häuser erzeugen mit Solarthermie, Photovoltaik und Wärmepumpe genügend Wärme und Strom zur Eigenversorgung, Strom- und Wärmespeicher helfen über sonnenschwache Tage hinweg. Wohnquartiere und Wohnsiedlungen werden über gemeinschaftliche Strom- und Wärmespeicher versorgt, einige erzeugen sogar Stromüberschüsse, die in das öffentliche Netz eingespeist werden. [3b] Die Wärme wird lokal durch Großflächen-Solarthermie, Biomassenutzung, in einigen Regionen auch durch Tiefen-Geothermie erzeugt. Abwasser- und Überschusswärme von Industrieunternehmen wird ebenso genutzt wie überschüssiger erneuerbarer Strom im „Power to Heat“-Verfahren. [3c] Nah- und Fernwärmenetze leiten die mit erneuerbaren Technologien erzeugte Wärme zu Verbrauchern und in Speicher.

Auch kleinere Gewerbe und Industriebetriebe versorgen sich energetisch selbst, größere sind für die Stromversorgung an Wind- oder Solarparks und das Fernwärmenetz angeschlossen. Wer sein Elektroauto nicht zu Hause selbst aufladen kann [3d], fährt zu Ladestationen auf öffentlichen Parkplätzen, in Tiefgaragen [3e], in Einkaufszentren [3f] oder lädt Strom während Reisen auf Autobahnrastplätzen [3g]. Die Batterien von Bussen, LKWs und Flottenfahrzeugen werden über Nacht an ihren Standorten aufgeladen, der öffentliche Schienenverkehr mit Strom von Wind- oder Solarparks aus Batteriegroßspeichern gespeist.

Lokale Stromerzeugung, lokaler und regionaler Stromverbrauch gleichen sich weitgehend über die Verteilnetze und an den Verknüpfungspunkten gleichermaßen wie in Gebäuden beim Endverbraucher installierten Batteriespeicher aus, unterstützt von weiteren Batteriespeichern zur Spannungsstabilisierung und dem Ausgleich von Erzeugungs- und Lastspitzen an den Netzknoten zwischen Mittel und Hochspannung. Infrastrukturstromspeicher [3h] als Teil der Batteriespeicher sichern außerdem bei einer Netzstörung die Stromversorgung von lokalen technischen Anlagen der öffentlichen Versorgung. Dazu gehören zum Beispiel die öffentliche Wasser- und Abwasserversorgung, die Gasversorgung und die Telekommunikation.
Regionale Netze sind über die Mittelspannungsebene miteinander verbunden und ergänzen gegenseitig ihren Stromhaushalt oder werden aus saisonalen Stromspeichern unterstützt. Der Strom aus offshore Windparks und großen onshore Windparks wird regional verbraucht oder kann über das Hochspannungsnetz zu anderen Regionen geleitet werden. Wird mehr erneuerbarer Strom erzeugt, als gerade verbraucht, befüllt dieser Batteriespeicheranlagen mit hoher Kapazität, kann gegebenenfalls Druckluft erzeugen, die in großen Kavernen gespeichert wird, über „Power to Gas“-Anlagen synthetisches Methan in das Gasnetz einspeisen oder Pumpspeicherseen füllen: Ein sinnvoller Vorrat für die Zeiten, wenn über viele Tage hinweg, zu wenig Wind weht und die Sonne nicht scheint.

Schiffe und Flugzeuge werden mit flüssigem erneuerbaren Kraftstoff betankt, Küstenschiffe fahren und kleinere Flugzeuge fliegen elektrisch angetrieben, transkontinentale Güterbahnsysteme übernehmen den Großteil der Containerfrachten und der öffentliche Personenverkehr fährt komplett elektrisch, auf Nebenbahnen, im regionalen Nahbereich als Straßenbahn sogar batteriegetrieben.

3.1 Wärme und Strom in der Zukunft

Die Energieversorgung der Zukunft beruht auf der Nutzung von Wärme und erneuerbar erzeugtem Strom. Insbesondere durch einen strombasierten Verkehr wird sich der Strombedarf deutlich erhöhen. Im Jahr 2014 wurden in Deutschland nur 21% der Endenergie als Strom verbraucht, dagegen mehr als die Hälfte in Form von Wärme. [3.1a] Wie wird dieses Verhältnis in der Zukunft sein? Schauen wir uns dazu noch einmal die einzelnen Verbrauchsbereiche an:

Für den Verkehrsbereich wurde in Kapitel 2.2 und 2.5 der Strombedarf auf 244 TWh für die Mobilität in Deutschland und auf 261 TWh für den Anteil am internationalen See- und Flugverkehr abgeschätzt. Dabei wurde davon ausgegangen, dass der Anteil von flüssigen Kraftstoffen für sonstige Kraftfahrzeuge (Spezialmaschinen) und den Flug- und Schiffsverkehr durch Strom im Power-to-Liquid-Verfahren hergestellt wird. Der nutzbare Wärmeanteil ist hier sehr gering und wird in der Gesamtbetrachtung vernachlässigt.

Im Kapitel 2.3 wurde der zukünftige jährliche Energiebedarf für private Haushalte zu 210 TWh abgeschätzt. Legt man wie das Bundesumweltamt einen Wärmeanteil von 53,8 Prozent zugrunde [3.1b], errechnet sich daraus ein Stromanteil von 97 TWh und ein Wärmeanteil von 113 TWh.

In der Industrie werden heute nach Angaben des Umweltbundesamtes ungefähr 2/3 der Energie allein für Prozesswärme verbraucht [3.1c] und auch im Bereich Gewerbe, Handel und Dienstleistungen betrug der Anteil für Raumwärme, Warmwasser, Prozesswärme und -kälte insgesamt 72 Prozent am Endenergiebedarf. [3.1d] Bei etwa einem Drittel des Wärmebedarfs liegt die erforderliche Temperatur unter 100 Grad Celsius. In Zukunft kann aber ein deutlich höherer Wärmeanteil als heute mit erneuerbaren Energien abgedeckt werden. Mit Vakuumröhrenkollektoren lassen sich Flüssigkeitstemperaturen bis zu 350 Grad Celsius erreichen (siehe 1.4.1) und mit Solarturmkraftwerken kann sowohl Strom als auch Prozesswärme bis zu 800 Grad Celsius erzeugt werden. [3.1e] Ein Teil der Prozesswärme, die für technische Prozesse wie zum Beispiel das Schmelzen und Schmieden benötigt wird, muss aber wahrscheinlich auch zukünftig mit Hilfe von Strom erzeugt werden. Für die weiteren Abschätzungen gehen wir auch auf Grund eines hohen Wärmeeinsparungspotentials für den Bereich Industrie, Gewerbe, Handel und Dienstleistungen von einem Wärmeanteil von nur noch 50% am gesamten Energiebedarf aus.

Strom [TWh] Wärme [TWh] Mobilität

244 0 261

Private Haushalte:

97 113

Wirtschaft und Verwaltung:

370 370

Summe:

972 484

Tab.: Jährlicher direkter Bedarf an Strom und Wärme in der nachhaltigen Zukunft

Wind und Sonneneinstrahlung stehen nicht gleichmäßig zur Verfügung und schwanken im Tages-, aber auch im Jahresverlauf in ihrer Intensität. Auf der anderen Seite besteht beim Energiebedarf ein sich im Tagesverlauf, aber auch jahreszeitlich ändernder Bedarf. Im Winter wird mehr Wärme zum Heizen benötigt und während der Urlaubsreisezeit und zu Festtagen wird der Strombedarf im Verkehr ansteigen. Das Angebot und die Nachfrage von Strom und Wärme verändern sich also unabhängig voneinander und beide müssen daher zwischengespeichert werden. Die hierbei entstehenden Verluste werden in den nächsten Kapiteln abgeschätzt.

3.2. Zusätzlicher Wärmebedarf durch Verluste bei der Wärmeleitung und -speicherung

Die Fraunhofer Gesellschaft ISE geht bei Wärmespeichern von einem Wirkungsgrad von 90% aus. [3.2a] In aller Regel wird man auf die benötigte Wärme über einen Wärmespeicher zugreifen. Daher gehen wir von einem Verlust bei der Wärmeleitung und -speicherung von etwa 10% aus und es ergibt sich bei einem Wärmebedarf von 484 TWh (siehe Tabelle) ein zusätzlicher (Wärme-)Energiebedarf von 48 TWh bzw. ein Gesamtbedarf von 532 TWh.

3.3. Verluste der Stromleitung und -speicherung

Immer wenn elektrischer Strom fließt, wird ein Teil der elektrischen Energie in Wärme umgewandelt. Auch beim Laden und Entladen von Stromspeichern entstehen Verluste, die durch eine höhere Stromproduktion ausgeglichen werden müssen.

3.3.1 Stromleitungsverluste

Beim Fließen des Stromes durch herkömmliche Kabel und Transformatoren entsteht Wärme und ein Teil der Energie ist dann nicht mehr als Strom verfügbar. Die eingespeiste Leistung ist höher als die, die entnommen werden kann. Das Bundesministerium für Wirtschaft und Energie hat die „Netzverluste und Nichterfasstes“ für die Jahre 2010 bis 2014 berechnet. Sie liegen zwischen 4,7% im Jahr 2010 und 4,2% im Jahr 2014 der jährlichen Nettostromerzeugung [3.3.1a]

Meine Zwischenfrage: wie kann das sein, wenn einer Bruttostromerzeugung von ganz grob 600 TWh eine abgerechnete Strommenge von knapp über 500 TWh gegenübersteht? Da fehlen meiner Rechnung nach eher 17%. Wo wird hier wann was gemessen?

Auch wenn im Hochspannungsübertragungsnetz zukünftig die verlustärmere Übertragung mit Gleichstrom [Tennet TSO GmbH: „Hochspannungs-Gleichstrom-Übertragung“ [3.3.1b] oder sogar supraleitende Stromkabel [zum Beispiel IASS Potsdam: „Supraleitung“ [3.3.1c] eingesetzt werden, ist das Verteilungsnetz so ungleich viel größer, dass der durchschnittliche Stromleitungsverlust nun wenig sinken würde. Die Bundesnetzagentur unterstellt im „Entwurf des Szenariorahmen 2030“, dass die Netzverluste durch die weitergehende Integration der EE und hohen Transportaufgaben bis 2030 bzw. 2035 zwischen 6% und 10% steigen können. [3.3.1d] Dem widerspricht jedoch der Verband der Elektrotechnik in seiner Studie „der Zellulare Ansatz“ aus dem Jahr 2015 [3.3.1e]. Bei vollständiger Stromversorgung durch Erneuerbare Energien sinkt der Übertragungsbedarf von 602 TWh auf 394 TWh im Jahr [3.3.1f] Schätzt man den durchschnittlichen zukünftigen Verlust im Stromnetz zu 5% ab, so errechnet sich bei einem jährlichen Strombedarf von 972 TWh (siehe Tabelle) ein zusätzlicher Bedarf von 49 TWh.

3.3.2 Verluste bei der Stromspeicherung

Jede Form der Stromspeicherung ist mit Verlusten verbunden. Daher ist es klüger den Strom in möglichst hohem Maße direkt zu verbrauchen. Mit der Energiewende und der Umstellung der Stromerzeugung auf Sonne und Wind als schwankende Hauptstromerzeuger werden Stromspeicher aber zum alltäglichen Begleiter in der Energieversorgung. Wenn mehr erneuerbarer Strom erzeugt werden kann, als gerade benötigt wird, wird er für die Zeiträume geringer Erzeugung zwischengespeichert. Herrscht in Nachtstunden Windstille liefern weder PV Anlagen noch Windkraftanlagen Strom. Auch bei mehrtägigen Wetterlagen mit zu wenig Wind und Sonnenstrahlung wird die Stromversorgung durch von Wind und Sonne unabhängige erneuerbare Energien (wie zum Beispiel Laufwasserkraftwerke) und Stromspeicher erfolgen. Welcher Stromanteil wird in nun in den verschiedenen Verbrauchsbereichen vermutlich gespeichert werden?

3.3.2.1 Stromspeicherverluste im Verkehrsbereich

Der Stromanteil am Energieeinsatz betrug 2014 im Verkehrsbereich nur 1,6% [3.3.2.1a] und wurde fast ausschließlich im Schienenverkehr verbraucht. Dieser Anteil wird sicherlich ansteigen, so dass im Bereich der Mobilität ein Teil des erzeugten Stromes direkt verbraucht und nicht zwischengespeichert werden muss. Dieser Anteil ist heute nur schwer abzuschätzen, ebenso welchen Anteil bei der Energieversorgung strombasierte flüssige oder gasförmige Kraftstoffe haben werden. Bei ihnen würden allerdings praktisch keine Speicherverluste auftreten. Näherungsweise gehen wir davon aus, dass in Zukunft dreiviertel des gesamten Energiebedarfs über Stromspeicher läuft (183 TWh). Bei modernen stationären Akkus, wie sie zum Beispiel in Kombination mit Photovoltaikanlagen eingesetzt werden, entstehen dabei Verluste von ca. 6%. [3.3.2.1b]. Beim Laden des Fahrzeugakku und dem Stromverbrauch der Zusatzgeräte tritt dann noch ein Verlust von etwa 20% auf. [3.3.2.1c]. Bei einem Energiebedarf von 183 TWh, wie er in Kapitel 1.1 abgeschätzt wurde, errechnet sich damit ein jährlicher Zusatzbedarf von 30% bzw. 55 TWh. Beim internationalen See- und Flugverkehr gehen wir näherungsweise von keinen Verlusten bei der Lagerung von strombasiert erzeugten Kraftstoffen aus.

3.3.2.2 Stromspeicherverluste der privaten Haushalte

Betrachtet man den Stromverbrauch für einen bestimmten Zeitraum (zum Beispiel einen Tag) von Gruppen (zum Beispiel Haushalte oder Gewerbebetriebe), die ein ähnliches Verbrauchsverhalten haben und stellt ihn in einem Diagramm dar, ergibt sich ein „Standardlastprofil Strom“. [3.3.2.2a] Der Stromverbrauch privater Haushalte ist von Tag zu Tag etwa gleich und folgt dabei einem typischen Tagesverlauf:

Grafik
Standardlastprofil „Haushalt“ [3.3.2.2b]

Ab 4.00 Uhr morgens steigt der Strombedarf bis mittags 13.00 Uhr kontinuierlich an. Bis etwa 16.00 Uhr am Nachmittag sinkt er dann kontinuierlich auf das Niveau von 6.00 Uhr morgens ab, um dann auf die höchsten Verbrauchswerte gegen 19.30 Uhr zu steigen (ungefähr zweieinhalbmal so hoch wie morgens um 6.00 Uhr und 20% höher als mittags). Danach sinkt der Stromverbrauch kontinuierlich auf den tiefsten Wert gegen 3.00 Uhr in der Nacht. Am Wochenende verschiebt sich das Lastprofil etwas. Der Strom für private Haushalte wird hauptsächlich mit Photovoltaik-Anlagen erzeugt werden. Deren Stromerzeugung beginnt mit dem Sonnenaufgang und steigt dann auf einen maximalen Wert um ca. 14.00 Uhr. Danach sinkt sie bis in die Abendstunden ab. [3.3.2.2c] Dies führt zu einer Stromüberproduktion am frühen Nachmittag und natürlich zu einer fehlenden Stromerzeugung in den Nachtstunden, die aber durch einen Stromspeicher ausgeglichen werden kann. Außerdem müssen sonnenreiche Tage dazu genutzt werden, den Strom für Tage mit nur wenig Sonnenschein zu erzeugen und zu speichern. Nach dem Standardlastprofil für Haushalte an Werktagen beträgt der Strombedarf zwischen 0.00 Uhr/7.00 Uhr und 19.00 Uhr/0.00 Uhr zusammen etwa 42% des Tagesbedarfs. [3.3.2.2d] Dieser Anteil muss über Stromspeicher gedeckt werden, da in dieser Zeit keine ausreichende Sonneneinstrahlung auf die Photovoltaikmodule vorhanden ist. Durch einen Wirkungsgrad der Module von 20% und mehr ist bereits heute eine gemischte Ausrichtung der Photovoltaikmodule bei vorzugsweiser Nutzung von Dünnschichttechnologien in alle Himmelsrichtungen sinnvoll. Damit ist eine längere und gleichmäßige Stromerzeugung im Tagesverlauf möglich. Hinzu kommt die Stromversorgung aus dem Speicher der Haushalte an Tagen mit nur geringer Sonneneinstrahlung. Setzt man für solche Tage einen Anteil von 10% an, ergibt sich ein zu speichernder Stromanteil von insgesamt 52%. Bei einem Jahresstrombedarf für private Haushalte von 97 TWh (siehe Tabelle xx Kapitel 3.1) wären dies 50 TWh Speicherkapazität. Bei modernen stationären Akkus, wie sie in Kombination mit Photovoltaikanlagen eingesetzt werden, entstehen dabei Verluste von ca. 10%. [3.3.2.2e] Damit ist im Bereich der privaten Haushalte ein Zusatzbedarf in Höhe von etwa 5 TWh zu berücksichtigen.

Hinweis: Für diese Strategie habe ich eine Speicherkapazität von 20% des Jahresstromverbauchs als sinnvoll ermittelt. Das ist aber noch ein viel zu hoher Invest.

3.3.2.3 Stromspeicherverluste von Industrie und Verwaltung

In Gewerbebetrieben steigt der Stromverbrauch nach dem Standardlastprofil ab etwa 3.30 Uhr kontinuierlich bis 12.30 Uhr auf mehr als das Vierfache an. Nach einem Zwischentief gegen 14.00 Uhr steigt der Stromverbrauch am Nachmittag noch einmal etwas an, um dann bis das Niveau von 3.30 Uhr morgens abzufallen.

Grafik
Lastprofil „Gewerbe allgemein“ [3.3.2.3a]

Die gleiche Tagesanalyse wie bei dem Lastprofil für Haushalte ergibt für das Lastprofil „Gewerbe allgemein“ einen täglichen Speicherbedarf von 29%. Berücksichtigt man auch hier sonnenschwache Tage mit einem zusätzlichen Speicherbedarf von 10%, ergibt sich ein Gesamtbedarf von 39%. Bei Industrieunternehmen sollte der Bedarf nicht höher sein, da sie oft den produktionsbedingten Stromverbrauch zumindest teilweise in die Tageszeiten mit hoher Stromerzeugung verschieben können (die sogenannte „Lastverschiebung“). Der Stromverbrauch von Dienstleistungsunternehmen und Verwaltungen wird in der Regel dem Lastverlauf des Standardprofils für „Gewerbe zwischen 8 und 18.00 Uhr“ mit einem Tagesspeicherbedarf von 10% [3.3.2.3b] folgen. Für den gesamten Bereich „Wirtschaft und Verwaltung“ schätzen wir den Speicherbedarf auf 35% des Verbrauchs bzw. 130 TWh (nach Tabelle, Kapitel 3.1). Berücksichtigt man wieder Speicherverluste von 10%, errechnet sich für diesen Bereich ein zusätzlicher Strombedarf von 13 TWh.

3.3.2.4 Stromspeicherverluste durch die saisonale Speicherung

Die Energieversorgung der Zukunft basiert fast vollständig auf den erneuerbaren Energien Sonne und Wind. Diese Energiequellen stehen jedoch nicht gleichmäßig über das Jahr verteilt zur Verfügung, sondern die Sonneneinstrahlung ist in Deutschland im Juli und der Windertrag in den Wintermonaten am höchsten:

Grafik
Mittlere Sonnenscheindauer der Jahre 1893 bis 2015 [3.3.2.4a]

Grafik
Prozentuale Veränderung des Mittelwerts des Windertragsindex im Jahr 2015 von Küstenlage und Binnenland im Vergleich zum Durchschnitt der Jahre 2010 bis 2014 [3.3.2.4b]

In den Jahren 2011 bis 2014 hat sich die Stromerzeugung aus Windkraft- und Photovoltaikanlagen auf Monatsbasis recht gut ergänzt:

Grafik [3.3.2.4c]
Monatliche Photovoltaik- und Windstromproduktion in den Jahren 2011 bis 2014

Bei einer nachhaltigen Energieversorgung wird jedoch der Anteil der solaren Stromerzeugung wesentlich höher als der der Windkraft sein. Wir gehen in dieser Ausarbeitung von einem Anteil von 79% für die Photovoltaik und 21% für die Stromerzeugung mit Windkraftanlagen aus (siehe Kapitel 4). Legt man die Jahresgänge für Sonne und Wind aus den Grafiken zugrunde, ist damit die Stromerzeugung im Juni am höchsten und im November am niedrigsten:

Grafik [3.3.2.4d]

Modell Jahresgang der Stromerzeugung [TWh] mit 1000 GW installierter Photovoltaik und 84 GW installierter Leistung an onshore Windkraftanlagen und 30 GW installierter Leistung an offshore Windkraftanlagen.

Für die jährliche Stromerzeugung werden folgende Volllaststundenzahlen zugrunde gelegt: Photovoltaik 940, onshore Windkraftanlagen 1600 und offshore Windkraftanlagen 3900. Es errechnet sich dann eine Jahresstromerzeugung von 1191 TWh. Mit welchem Jahresgang im Stromverbrauch ist zu rechnen? Da im Jahr 2015 fast kein Strom gespeichert wurde, kann man die Stromerzeugung auch als Maß für den Stromverbrauch nehmen. [3.3.2.4e] Hochgerechnet auf einen Stromverbrauch von 1191 TWh und unter Berücksichtigung der monatlichen Stromerzeugung nach dem oben genannten Modell ergibt sich der folgende Jahresgang:

Grafik
Monatlicher Saldo der Stromerzeugung und des Stromverbrauchs im 1191 TWh-Modell

Ab April ist die Stromerzeugung höher als der monatliche Stromverbrauch. Der Stromüberschuss steigt dann bis auf fast 55 TWh im Juni an. Von Oktober bis März wird weniger Strom als benötigt produziert. Das bedeutet, dass ab April ein Stromüberschuss gespeichert werden sollte, der dann in den Monaten mit zu geringer Stromproduktion die Stromversorgung ergänzt. Summiert man die Überproduktion in den Monaten April bis September auf, so ergibt sich als Speicherbedarf eine Summe von 220 TWh. Zusätzlich sollte man noch eine Reserve von 10 Tagesverbräuchen im März einrechnen (33 TWh) falls in dem Moment, in dem die Großspeicher leer sind, eine Wind- und Sonnenflaute eintritt. Als „saisonaler Speicher“ für diese Strommenge bieten sich technologisch das „Power to Gas“ – Verfahren mit dem bereits vorhandenen Gasnetz und vielleicht auch die Druckluftkavernenspeicherung an. Die Redox-Flow-Batterie sollte dabei nicht vergessen werden: Speicherverlust p.a. 2%, Strom-zu-Strom 85%, mittlerweile auf Polymerbasis ohne Rohstoffsorgen herstellbar (www.jenabatteries.com), preislich mit ca. 800 €/kWh Kapazität noch zu teuer, aber nahezu unbegrenzte Zyklenzahl und daher den beiden genannten Technologien insgesamt klar überlegen. Der „Strom zu Strom“-Wirkungsgrad einer Druckluftkavernenspeicherung wird heute mit 75% bis 80% angegeben. Ernsthaft? Aber sicher nur mit externer Wärmezufuhr bei Leistungsabruf. Ist das dabei eingerechnet?

Beim „Power to Gas“ – Verfahren mit 30% bis 45% abgeschätzt [3.3.2.4f]. wegen des angeblich doppelt so hohen Wirkungsgrads ist dieser Technologie die Druckluftkavernenspeicherung vorzuziehen? Insbesondere in Salzkavernen kann in Druckluft oder Wasserstoff umgewandelter überschüssiger Wind- und Solarstrom gespeichert werden. Solche Kavernen werden in Deutschland bereits seit Jahrzehnten zur Speicherung von Erdöl und Erdgas genutzt. Für die Speicherung von Gasen unter Druck besitzen sie den Vorteil einer hohen mechanischen und chemischen Stabilität und Dichtheit. Sie lassen sie sich schnell und flexibel befüllen und entleeren und es muss relativ wenig Gas permanent im Speicher verbleiben, um den Druck aufrecht zu erhalten. In dem vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Verbundforschungsprojekt InSpEE (Informationssystem Salzstrukturen – Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien) wurde vorhandenes geologisches Datenmaterial über den norddeutschen Untergrund systematisch ausgewertet. [3.3.2.4g] Aufgrund der geologischen Verhältnisse in Deutschland sind als Kavernen nutzbare Salzvorkommen hauptsächlich in Nord- und Mitteldeutschland vorhanden. Im Süden Deutschlands gibt es nur sehr vereinzelte Salzvorkommen mit geringen Mächtigkeiten, die zudem einen hohen Anteil nicht löslicher Bestandteile aufweisen. Damit eignen sie sich nur schlecht für ein Ausspülen im Salz zum Anlegen einer Kaverne. [3.3.2.4h] Das Gutachten „Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050“ des „Runden Tisches Energiewende Niedersachsen“ schätzt allein für Niedersachsen das Potential für die Speicherung in unterirdischen Kavernenspeichern auf 350 TWh.[3.3.2.4i] Im Sinne einer dezentralen und verbrauchsnahen Stromversorgung und eines möglichst geringen Ausbaus des Übertragungsstromnetzes wäre es sinnvoll, im süddeutschen Raum die „Power to Gas“-Technologie in Verbindung mit dem vorhandenen Gasnetz als saisonalen Speicher zu verwenden. Geht man von einem durchschnittlichen Wirkungsgrad der saisonalen Stromspeicherung von 65% Prozent aus, so müssen 35% bzw. 89 TWh der im saisonalen Speicher gespeicherten Strommenge als Verlustausgleich zusätzlich erzeugt werden.

3.3.2.5. Stromspeicherverluste der Infrastrukturspeicher

Bei Infrastrukturspeichern auf Redox Flow Basis geht man von einem Gesamtwirkungsgrad von 90% aus (leider nur 85%, soweit ich weiß.) Bei der Zuordnung von Speicherkapazitäten gehen wir mangels Erfahrung von einer Annahme aus. In Deutschland existieren laut BnetzA ca. 600.000 Trafostationen welche also die Mittelspannung, meist 20 kV in die für uns in der Regel brauchbare Niederspannung 240/400 V transformieren.

Speicherte man an jedem Trafo 1 MWh/Tag erhielte man x 5 Tage = 5 MWh x 600.000 = 3 TWh. 1 MWh Überschussspeicherung aus PV am Vormittag 0,4 MWh, am Nachmittag z. B. 70% und Überschussspeicherung aus Wind 100% bei Nacht wären 2,1 MWh…

Dann würden pro Jahr wohl eher 400 MWh oder 600 MWh pro Standort ein- und ausgespeichert…

Warum 5 Tage?

Jegliche Vorausberechnung halte ich für am Ende nutzlos. Klüger wäre es, mit einer Tageskapazität zu beginnen und dann die Speicher regelmäßig jährlich zu vergrößern um die Effekte zu dokumentieren. Schlicht weil es in der realen Umsetzbarkeit sowieso nicht so schnell geht.

Die Annahme das jeder Trafostation ein Speicher zugeordnet wird ist natürlich nur ein Modellhafte Betrachtung.

Bitte beachten: Bei Trafostationen und auch Umspannwerken empfiehlt sich dringend ein gemischtes System aus Redox-Flow für die Kapazität und Li-Ion für die Leistungsbereitstellung sowie der Einsatz von Superkondensatoren.

Ein Speicherverlust von 0,3 TWh bedeutet, dass in einem Jahr in einem Infrastrukturspeicher von 1 MWh nur 5 MWh ein- und ausgespeichert werden (Erzeugungs- und Lastspitzen). Lohnt dafür der Aufwand? Eine Notversorgung könnte auch mit Notstromaggregaten und P2G-Kraftstoff erfolgen.

Damit summiert sich der zusätzliche Energiebedarf durch Stromleitungsverluste, die Speicherverluste für Haushalte, Wirtschaft, Verwaltung, Infrastruktur und der Mobilität sowie durch einen zusätzlichen Energieaufwand für die saisonale Speicherung auf 211 + x TWh und der gesamte deutsche Stromverbrauch nach der Energiewende wird auf 1183 + x TWh geschätzt:

Strom [TWh] Wärme [TWh] Stromleitungen:

49 0

Mobilität:

55 0

Private Haushalte 5

Wirtschaft und Verwaltung: 13

Infrastrukturspeicher: 0,3

saisonale Speicherung: 89

Summe: 211 + x 48

Tab.: Zusätzlicher Bedarf an Strom und Wärme durch Leitungs- und Speicherverluste

3.3. Rohstoffverfügbarkeit für die Wärme- und Stromspeicherung

3.3.1 Rohstoffverfügbarkeit für die Wärmespeicherung

Wie in Kapitel 1.4.1 erläutert wurde können für die Wärmespeicherung je nach Aufgabenstellung unterschiedliche Technologien eingesetzt werden. Hierbei werden industrielle Standardprodukte und -werkstoffe aus den verschiedensten Rohstoffen eingesetzt. Eine Rohstoffknappheit für den Bereich der Wärmespeicherung ist nicht zu erwarten.

3.3.2. Rohstoffverfügbarkeit für die Stromspeicherung

Wie in den Kapiteln oben erläutert wurde, entsteht durch die fast ausschließliche Stromerzeugung mit Sonne und Wind, in allen Verbrauchsbereichen ein hoher Bedarf an Stromspeicherkapazitäten.

3.3.2.1. Stromspeicher im Bereich Mobilität

Mit den Zulassungszahlen des Kraftfahrt-Bundesamtes vom 01. Januar 2016 für PKW, Krafträder, Busse, Nutzfahrzeuge und sonstige KFZ (z.B. Traktoren oder Baumaschinen) bzw. vom 01. Januar 2015 für die verschiedenen LKW-Klassen [3.3.2.1a] kann man das für alltagstaugliche Fahrzeugreichweiten notwendige Fahrzeugspeichergesamtvolumen zu ca. 6,5 TWh abschätzen. [3.3.2.1b] Allerdings kann dies nur eine grobe Schätzung sein, da sich zum Beispiel die Reichweitenerfordernisse durch den Einsatz der Oberleitungstechnologie im Bereich der Busse oder LKWs oder auch die einzelnen Zulassungszahlen in Zukunft deutlich verändern können. Der weltweite Fahrzeugbestand ist mit 1,1 Milliarden Kraftfahrzeugen [3.3.2.1c] ca. zwanzigmal so hoch. Legt man ähnliche Reichweiten der Fahrzeuge wie in Deutschland zu Grunde, bedeutet das einen Speicherbedarf von 130 TWh. Als Fahrzeugbatterien bieten sich aus heutiger Sicht Lithium-Ionen-Akkus aufgrund ihrer vergleichsweise hohen Energiedichte an. Insbesondere auch deswegen, weil Forschungsergebnisse vermuten lassen, dass sich die Speicherkapazitäten durch die Verwendung anderer Anodenwerkstoffe im Akku noch deutlich steigern lassen [3.3.2.1d] Auf der anderen Seite wurden im Jahr 2012 die Lithiumrohstoffreserven – das heißt die Menge an Lithium, die heute technisch und ökonomisch abbaubar ist – auf 13 Millionen Tonnen geschätzt. [3.3.2.1e] Bei einem Anteil von 80g Lithium pro kWh-Speicherkapazität aus [3.3.2.1f] ließen sich Akkus mit einer gesamten Speichermenge von 160 TWh herstellen. Auch wenn die Ressourcen an Lithium, also die Menge des in der Natur vorkommenden Rohstoffes, die – heute oder in Zukunft – gewonnen werden könnten, vom geologischen Dienst der USA im Jahr 2012 auf 34 Millionen Tonnen geschätzt wurden [3.3.2.1e] ist eine Rohstoffknappheit an Lithium zu erwarten. Denn Lithium findet nicht nur in Fahrzeug-Akkus, sondern auch in vielen anderen industriellen Produkten und in der PharmazieAnwendung. [3.3.2.1g]
Allerdings ist die Magnesium-Ionen-Batterie ist bereits auf dem Weg.

Schwer abzuschätzen ist, inwieweit sich zukünftig der Personen- und Güterverkehr auf die Schiene verlagern und die Fahrzeugzahlen sinken werden. Ohne massive politische Einflussnahme zumindest gar nicht. Der Anteil des elektrischen Schienenverkehrs am Energiebedarf im Verkehrssektor ist mit 1,6 Prozent im Jahr 2014 noch sehr gering. [3.3.2.1h] Insbesondere im Bereich der Transporte mit 40-Tonnen-Sattelzügen verbrauchen Bahn und Schiff weniger als die Hälfte der Energie. [3.3.2.1i] Im Gegensatz zu den Fahrzeugspeichern könnten für ortsgebundene Stromspeicher wie zum Beispiel für Stromtankstellen auch andere Batteriespeicher (zum Beispiel Redox-Flow- oder Natrium-Schwefel-Stromspeicher) eingesetzt werden. Für diese ist keine Rohstoffknappheit zu erwarten.

3.3.2.2. Stromspeicher im Bereich Private Haushalte

Es wurde abgeschätzt, dass die privaten Haushalte – im Jahr 2014 waren es 40,2 Millionen [3.3.2.2a] – zukünftig im Jahr etwa 102 TWh Strom verbrauchen werden. Das entspricht einem durchschnittlichen Tagesverbrauch 0,28 TWh. Legt man die Größe eines Haushalts- oder Quartiersspeicher auf einen durchschnittlichen 5-Tages-Verbrauch aus, so berechnet sich die Gesamtspeichermenge auf 1,4 TWh. Aber private Haushalte werden ihre elektrischen Kraftfahrzeuge zumindest teilweise auch mit selbsterzeugten Strom laden wollen. Im Jahr 2014 wurden im motorisierten Individualverkehr 939 Milliarden km zurückgelegt. [3.3.2.2a] Legt man einen durchschnittlichen Verbrauch von 15 kWh pro 100km zu Grunde, so entspricht dies einem Jahresverbrauch 140 TWh bzw. durchschnittlich 0,38 TWh pro Tag. Soll der Haus- oder Quartiersspeicher auch hier einen 5-Tages-Verbrauch abdecken können, so erhöht sich die gesamte Speichergröße um 1,9 TWh auf insgesamt 3,3 TWh. Bei 40,2 Millionen Haushalten wäre das eine Speichergröße von 84 kWh pro Haushalt. Die heute angebotenen Haushaltsstromspeicher sind in aller Regel Stromspeicher mit Lithium-Ionen-Technologie. Im Gegensatz zu Fahrzeugspeichern können aber in privaten Haushalten oder bei Quartiersspeichern auch andere Speichertechnologien wie Redox-Flow-Batterien oder Druckluftspeicher eingesetzt werden. Dies ist auch wahrscheinlich, da die weltweit zurzeit verfügbaren Lithium-Ressourcen begrenzt sind und der Bedarf für Fahrzeugspeicher und andere Akkumulatoren diese vermutlich im Wesentlichen verbrauchen wird (siehe Kapitel 3.3.2.1).

3.3.2.3. Stromspeicher im Bereich Industrie und Verwaltung

Für den Bereich Industrie und Verwaltung wird der zukünftige Jahresstromverbrauch inklusive der Verluste auf 383 TWh geschätzt. Geht man für die Speichergröße auch hier von einem 5-Tagesverbrauch als Zielgröße aus, ergibt sich ein Speichervolumen von ca. 5,6 TWh. Hinzu kommen noch Speicher für das Laden der gewerbsmäßigen Fahrzeug-Flotten und des schienengebundenen Personen- und Güterverkehrs. Der jährliche Verbrauch ergibt sich aus der Differenz des Verbrauchs des Verkehrsbereiches minus dem motorisierten Individualverkehrs zu 159 TWh. der durchschnittliche Tagesverbrauch beträgt dann ca. 0,44 TWh. Legt man als Speicherbedarf einen durchschnittlichen 3-Tagesverbrauch zu Grunde erhöht sich der gesamte Speicherbedarf im Bereich Industrie und Verwaltung um 1,3 auf insgesamt 6,9 TWh. Als Speichertechnologien kommen aus heutiger Sicht auch hier wegen der Ressourcenknappheit von Lithium vor allem Redox-Flow, Druckluft oder NaS-Batteriespeicher in Frage.

3.3.2.4. Stromspeicher im Bereich Infrastruktur

Relation zu den Speichern im Bereich „Private Haushalte“ und „Industrie und Verwaltung“?!

https://de.wikipedia.org/wiki/Transformatorenstation

Infrastrukturspeicher = 3.000 GWh Speicherkapazität
Speicher 600.000 x 1 MWh/Tag x 5 Tage = 5 MWh
Für diese Speicher sind aus heutiger Sicht nicht nur Redox-Flow Systeme geeignet. Im enera-Projekt ist z. B. eine NaS-Batterie mit 3MWh geplant.

Die Entwicklung ist jedoch noch nicht abgeschlossen. Die Energiedichte von Redox-Flow Systemen ist noch zu gering.
Es steht also eine Speicherkapazität von 4.320 GWh elektrisch gespeicherter Energie zur Verfügung. Damit kann die öffentliche Versorgung der Bevölkerung mit Elektroenergie für einen Zeitraum von 5 Tagen abgesichert werden. Gleichzeitig sind diese Speicher großflächig verteilt, also dezentral angeordnet. Diese Tatsache verhindert oder erschwert einen Zusammenbruch der Versorgung mit Elektroenergie.

Technologien: Redox-Flow, NaS-Batterien (z. Zt. auch Lithium-Ionen)

3.3.2.5. Saisonale Stromspeicher

Im Kapitel 3.3.2.4 wurde bereits auf die Technologien für die saisonale Speicherung des in den Monaten April bis September überschüssig erzeugten PV-Stroms eingegangen. Das Gasnetz als Speicher ist bereits in reichlichem Volumen vorhanden und es können auch ausreichend viele Kavernen für die Druckluftspeicherung ausgespült werden. Allerdings muss noch eine erhebliche Kraftwerkskapazität aufgebaut werden. Geht man von einem jährlichen Strombedarf von 1.191 TWh aus, so bedeutet dies einen Tagesverbrauch von ca. 3,3 TWh. Ein kleiner Teil des Stroms kann durch die gesicherte Leistung von Laufwasserkraftwerken oder Gruben- und Deponiegas erzeugt werden. Sind im Extremfall jedoch die in den Kapiteln oben beschriebenen Alltagsstromspeicher leer, so muss von den Generatoren der saisonalen Speicher eine Spitzenleistung von ca. 163 GW zur Verfügung gestellt werden. [3.3.2.5a] Mit Stand vom 10. Mai 2016 weist die Kraftwerksliste der Bundesnetzagentur bereits heute eine fossile Kraftwerksleistung und damit eine Generatorenleistung von ca. 107 GW aus. Durch eine Erhöhung der Generatorenleistung um ca. 56 GW ist nicht mit einer Rohstoffknappheit zu rechnen.

Literaturverzeichnis und Anmerkungen:

3 Die Welt einer nachhaltigen Energieversorgung

[3a]
Dachintegrierte Photovoltaik – Indach-Anlagen und Solarziegel:

http://www.photovoltaiksolarstrom.de/photovoltaiklexikon/dachintegrierte-photovoltaik
Die Zukunft ist leicht: Organische Solarfolien von Heliatek:

http://www.heliatek.com/de/

[3a]
Die energetische Selbstversorgung einer Wohnsiedlung wird zum Beispiel im Forschungsprojekt „Plusenergiesiedlung Ludmilla-Wohnpark Landshut“ untersucht:

http://www.eneff-stadt.info/de/pilotprojekte/projekt/details/plusenergiesiedlung-ludmilla-wohnpark-landshut/

Dass auch in mehrstöckigen Wohngebäude ein Stromüberschuss erzielt werden kann, demonstriert der für sein nachhaltiges Bauen bekannte Architekt Karl Viridèn an diesem Beispiel:

http://www.tagesanzeiger.ch/zuerich/region/diese-fassade-liefert-mehr-energie-als-die-bewohner-brauchen/story/31316622

[3c]
Fernwärme in der Zukunft: Hamurg Institut: FERNWÄRME 3.0 Strategien für eine zukunftsorientierte Fernwärmepolitik, 19.02.2015

https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/energie/150310_HHI-Studie-Fernwaerme.pdf, Seite 7

[3d]
RWE verknüpft Solarstrom mit Elektromobilität:

http://www.energiefirmen.de/news/nachrichten/artikel-31462-rwe-verknuepft-solarstrom-mit-elektromobilitaet

[3e]
Siehe zum Beispiel:
https://de.chargemap.com/points/details/parkhaus-elisenhof
Die passende Ladestation für Parkhaus und Parkplatz:

http://www.europarking.de/Die-passende-Ladestation-fuer-Parkhaus-und-Parkplatz,QUlEPTY2MTAyMSZNSUQ9MzAwMjI.html

[3f]
Zum Beispiel: Kostenlos Ökostrom im KÖWE tanken.

http://www.koewe.de/allgemeine-info/parken/

[3g]
Als Beispiel: A1 Autobahnraststätte Kölliken Nord in Kölliken:

http://www.goingelectric.de/stromtankstellen/Schweiz/Koelliken/A1-Autobahnraststaette-Koelliken-Nord-A1-Autobahnraststaette-Koelliken-Nord/1442/
[3g]
Erklärung Infrastrukturspeicher:

3.1 Wärme und Strom in der Zukunft

[3.1a]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6, 7 und 7a; Stand 12.01.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[3.1b]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 85, Tabelle B-11,

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[3.1c]
Umweltbundesamt: „Energieverbrauch nach Energieträgern, Sektoren und Anwendungen“;

http://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/energieverbrauch-nach-energietraegern-sektoren

[3.1d]
http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 50

[3.1e]
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-10194/#/gallery/14554

3.2. Verluste der Wärmeleitung und -speicherung

[3.2a]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

3.3. Verluste der Stromleitung und -speicherung

3.3.1 Stromleitungsverluste

[3.3.1a]
Bundesministerium für Wirtschaft und Energie: Zahlen und Fakten – Stromaufkommen und -verbrauch

http://www.bmwi.de/DE/Themen/Energie/Strommarkt-der-Zukunft/zahlen-fakten.html

[3.3.1b]

http://suedlink.tennet.eu/technologie/hochspannungs-gleichstrom-uebertragung.html

[3.3.1c]

http://www.iass-potsdam.de/de/content/supraleitung

[3.3.1d]
Die Bundesnetzagentur geht im Entwurf des Szenariorahmen 2030 in Tabelle 9 von Verlusten zwischen 30 -50 TWh in den Jahren 2030/2035 aus. Allerdings wird dabei in den Szenarien laut Tabelle 10 von einem Nettostromverbrauch von 490-523 TWh ausgegangen. Dies wären Übertragungsverluste zwischen 6% und 10%. Dabei unterstellt die Bundesnetzagentur, dass die Netzverluste durch die weitergehende Integration der EE und hohen Transportaufgaben die Netzverluste bis 2030 bzw. 2035 steigen.

http://data.netzausbau.de/2030/Szenariorahmen_2030_Entwurf.pdf

[3.3.1e]
VDE Studie „der Zellulare Ansatz“

https://d2230clyyaue6l.cloudfront.net/wp-content/uploads/VDE_ST_ETG_GANN_web.pdf

[3.3.1f]
„VDE-Studie zeigt, wie Stromnetzausbau reduziert werden kann“

https://www.vde.com/de/verband/pressecenter/pressemeldungen/fach-und-wirtschaftspresse/2015/seiten/38-15.aspx
und
„Zahlen, Daten, Fakten zur Energiewende“, MdB Göppel, Folie 53 und 54

http://www.goeppel.de/fileadmin/template/goeppel/user_upload/Praesentationen/2016/160309_Praesentation_HP_Goeppel_.pdf?PHPSESSID=96fc6e4a316e8bd0047bc14323be0faf

3.3.2 Verluste bei der Stromspeicherung

3.3.2.1 Stromspeicherverluste im Verkehrsbereich

[3.3.2.1a]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6a, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[3.3.2.1b]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

[3.3.2.1c]
„Verbrauch, Ladeverlust und Wirkungsgrad im E-Auto“

http://e-auto.tv/verbrauch-ladeverlust-und-wirkungsgrad-im-e-auto.html

3.3.2.2 Stromspeicherverluste der privaten Haushalte

[3.3.2.2.a]

https://www.bdew.de/internet.nsf/id/DE_Standartlastprofile und

https://de.wikipedia.org/wiki/Standardlastprofil

[3.3.2.2b]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in KW eines privaten Haushaltes auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil H0

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofil_Haushalt.xls

oder auch Umweltbundesamt, Climate Change 14/2013: „Modellierung einer vollständig auf erneuerbaren Energien basierenden Stromerzeugung im Jahr 2050 in autarken, dezentralen Strukturen“, Seite 8 Abbildung 2

https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/climate_change_14_2013_modellierung_einer_vollstaendig_auf_erneuerbaren_energien.pdf

[3.3.2.2c]
Siehe das Agorameter zum Beispiel für den 08. und 09.06.2016 mit den historischen deutschen Stromerzeugungsdaten,

https://www.agora-energiewende.de/de/themen/-agothem-/Produkt/produkt/76/Agorameter/

[3.3.2.2d]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/

Beispiel eines täglichen Standardlastprofils in KW eines privaten Haushaltes auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil H0

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofil_Haushalt.xls

[3.3.2.2e]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

3.3.2.3 Stromspeicherverluste von Industrie und Verwaltung

[3.3.2.3a]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in kW für Gewerbe allgemein auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil G0 –

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofile_Gewerbe.xls

[3.3.2.3b]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in kW für Gewerbe 8.00 – 18.00 Uhr auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil G1

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofile_Gewerbe.xls
3.3.2.4 Stromspeicherverluste durch die saisonale Speicherung

[3.3.2.4a]
Potsdam-Institut für Klimaforschung: Sonnenscheindauer

https://www.pik-potsdam.de/services/klima-wetter-potsdam/klimazeitreihen/sonnenscheindauer

[3.3.2.4b]
Aus dem IWR-Windertragsindex Küstengebiete 2010-2014 und IWR-Windertragsindex Binnenland 2010-2014 als prozentuale Veränderung gegenüber dem monatlichen Jahresdurchschnitt berechnet:

http://www.iwr.de/wind/wind/windindex/index15_5jahre.htm

[3.3.2.4c]
Fraunhofer ISE: Aktuelle Fakten zur Photovoltaik in Deutschland Fassung vom 22.4.2016, Seite 38

https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf
(aus Bruno Burger, Stromerzeugung aus Solar- und Windenergie im Jahr 2014,

http://www.ise.fraunhofer.de/de/daten-zu-erneuerbaren-energien
Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE)

[3.3.2.4d]
Berechnet mit folgenden Volllaststundenzahlen:
Photovoltaik. 940 siehe

https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf

Seite 44 onshore Windkraftanlagen: 1600 siehe

http://windmonitor.iwes.fraunhofer.de/windmonitor_de/3_Onshore/5_betriebsergebnisse/1_volllaststunden/
offshore Windkraftanlagen: 3900 siehe

https://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/offshore-windenergie,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

[3.3.2.4e]
Bundesverband der Deutschen Energie- und Wasserwirtschaft: Monatliche Stromerzeugung in Deutschland 2015

https://www.bdew.de/internet.nsf/id/815BDDFE265716ACC1257F020058C4BD/$file/Stromerzeugung%20insgesamt%20monatlicher%20Vergleich%202014_2015%20online_o_monatlich_Ki_20042016.pdf

Die Monatswerte wurden auf einen Stromverbrauch von 1285 TWh linear hochgerechnet.

[3.3.2.4f]
https://www.wbu.de/pdf/positionen/2014-07-Wirtschaftsbeirat-Zahlen-Fakten-Strom-2014.PDF; Seite 23
Zur Druckluftkavernenspeicherung siehe das ADELE-Projekt von RWE:

http://www.dlr.de/Portaldata/1/Resources/standorte/stuttgart/Broschuere_ADELE_1_.pdf
Umweltbundesamt: „Integration von Power to Gas/Power to Liquid in den laufenden Transformationsprozess“, März 2016, Abbildung 4, Seite 14

http://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/integration_von_power_to_gaspower_to_liquid_in_den_laufenden_transformationsprozess_web_0.pdf
oder auch ein Wirkungsgrad von 70 Prozent in Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

[3.3.2.4g]
Pressemitteilung der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) vom 25.04.2016:

https://www.bgr.bund.de/DE/Gemeinsames/Oeffentlichkeitsarbeit/Pressemitteilungen/BGR/bgr-2016-04-25_salzstrukturen_speicher_erneuerbare-energien.html

Energiespeicher – Forschungsinitiative der Bundesregierung: „Potenzial von Kavernen vorhersagen“:

http://forschung-energiespeicher.info/wind-zu-wasserstoff/projektliste/projekt-einzelansicht/74/Potenzial_von_Kavernen_vorhersagen/
Die Ergebnisse des Forschungsprojektes „InSpEE“ können im Geoviewer der BGR unter folgenden Links abgerufen werden:

https://geoviewer.bgr.de/mapapps/resources/apps/geoviewer/index.html?lang=de&tab=geologie&layers=geologie_inspee_salzstrukturen

[3.3.2.4h]
„Verbesserte Integration großer Windstrommengen durch Zwischenspeicherung mittels CAES“ – Wissenschaftliche Studie gefördert durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 02. Februar 2007, Seite 26

http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/Zusatzinfos/2007-05_Abschlussbericht.pdf
[3.3.2.4i]
Gutachten des „Runden Tisches Energiewende Niedersachsen“: „Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050“, April 2016-04-25

http://www.umwelt.niedersachsen.de/download/106468

Bundesanstalt für Geowissenschaften und Rohstoffe – Salzkavernen:

https://www.bgr.bund.de/DE/Themen/Endlagerung/Geotech_Sicherheit/Salzkavernen/salzkavernen_inhalt.html

3.3.2.5 Stromspeicherverluste der Infrastrukturspeichern

3.3. Rohstoffverfügbarkeit für die Wärme- und Stromspeicherung

3.3.1. Rohstoffverfügbarkeit für die Wärmespeicherung

3.3.2. Rohstoffverfügbarkeit für die Stromspeicherung

3.3.2.1 Stromspeicherbedarf im Bereich Mobilität

[3.3.2.1a]
Statistik des Kraftfahrt-Bundesamtes:

http://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Groessenklassen/2015_b_groessenklassen_lkw_dusl.html?nn=662728

[3.3.2.1b]

Die Berechnung erfolgte nach den in der folgenden Tabelle zusammengefassten Annahmen und Literaturzahlen:

Anzahl [Mio.] PKW 45,1
Reichweite [km] 600
Verbrauch [kWh/100km] 15 (*)
Speichergröße [kWh] 90
Gesamtspeicher [TWh] 4,06 (*)

http://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Groessenklassen/2015_b_groessenklassen_lkw_dusl.html?nn=662728

LKW (Zulassungszahlen 01.01.2015):
bis 3,5t: 2,176 600 30 (*) 180 0,39
(*)
http://www.dlr.de/Portaldata/1/Resources/portal_news/newsarchiv2010_3/Shell_Lkw_Studie_FIN_17042010.pdf, Seite 24

3,5t bis 7,5: 0,249 500 45 (geschätzt) 225 0,06
7,5t bis 12t: 0,08 500 63 (geschätzt) 315 0,03
12t bis 20t: 0,073 300 88 (*) 264 0,02 (*)

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/6626/maerkte-amp-trends/elektro-lkw-bei-meyer-logistik-der-neun-liter-

über 20t: 0,123 500 120 (geschätzt nach *) 600 0,07
(*)

https://www.max-boegl.de/informationen/pressemeldungen-ueber-max-boegl/600-01-09-2015-lastauto-omnibus-schwerlast-zugmaschinen-in-zwei-leistungsklassen/file.html

und Verband der Automobilindustrie: „Das Nutzfahrzeug – umweltfreundlich und effizient“

https://www.vda.de/dam/vda/publications/Das%20Nutzfahrzeug/1221663368_de_234327962.pdf, Seite 8

(Zulassungszahlen 01.01.2016):
Zugmaschinen: 2,141 600 130 (geschätzt) 780 1,67
Busse: 0,078 300 120 (*) 360 0,03
(*) http://www.proterra.com/product-tech/product-portfolio/#terravolt
Krafträder: 4,228 200 13 (*) 26 0,11
(*) http://www.zeromotorcycles.com/de/zero-s-specs; ZERO S zf13.0
sonstige KFZ: 0,228 200 120 (*) 240 0,05
Summe: 6,49

[3.3.2.1c]
http://de.statista.com/statistik/daten/studie/244999/umfrage/weltweiter-pkw-und-nutzfahrzeugbestand/
[3.3.2.1d]
http://www.pcwelt.de/news/Durchbruch-Lithium-Ionen-Akku-mit-zehnfacher-Laufzeit-entwickelt-134039.html
https://www.akku.net/magazin/lithium-ionen-akku-zehn-spannende-fakten-zur-herstellung-des-energiespeichers/

[3.3.2.1e]
http://www.quetzal-leipzig.de/lateinamerika/bolivien/interview-mit-robert-sieland-lithium-salar-de-uyuni-bolivien-t1-19093.html
[3.3.2.1f]
https://de.wikipedia.org/wiki/Lithium-Ionen-Akkumulator
[3.3.2.1g]
http://de.statista.com/statistik/daten/studie/159921/umfrage/verwendungszwecke-von-lithium-auf-dem-weltmarkt/,

2016 oder Karlsruher Institut für Technologie:
Die Problematik der Rohstoffverfügbarkeit am Beispiel von Lithium
von Saskia Ziemann, Marcel Weil und Liselotte Schebek, ITAS, Dezember 2010

https://www.tatup-journal.de/tatup103_ziua10a.php

[3.3.2.1h]
[Energiedaten des Bundesministeriums für Wirtschaft und Energie Tabelle 6a, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html]

[3.3.2.1i]
Umweltbundesamt:

http://www.umweltbundesamt.de/themen/verkehr-laerm/emissionsstandards/binnenschiffe

http://www.value-analyse.de/service/value-news/lithium-das-weisse-gold-der-anden.html

3.3.2.3 Stromspeicher im Bereich Private Haushalte

[3.3.2.2a]
[Energiedaten des Bundesministeriums für Wirtschaft und Energie Tabelle 1, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html]

3.3.2.4. Stromspeicher im Bereich Infrastruktur

3.3.2.5. Saisonale Stromspeicher

[3.3.2.5a]
Die Abschätzung:
Zurzeit beträgt die jährliche Bruttostromerzeugung in Deutschland ca. 600 TWh. Die Spitzenlast betrug im Jahr 2015 82,735 GW (Siehe das Agorameter für den 12.01.2015,

https://www.agora-energiewende.de/de/themen/-agothem-/Produkt/produkt/76/Agorameter/)
Die jährliche Stromerzeugung bei einer nachhaltigen Energieversorgung wurde zu 1191 TWh abgeschätzt. Damit kann in Zukunft von einer jährlichen Spitzenlast von ca. 163 GW ausgegangen werden.

[3.3.2.5b]
http://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
und
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_2015.xlsx;jsessionid=4E11D160148D3CF2E1C7EEAAABA43EDD?__blob=publicationFile&v=5

Alle Wasserkraftanlagen in Deutschland haben eine installierte Leistung von 4100 MW. Etwa 2500 MW entfallen dabei auf Pumpspeicherwerke und nur 1632 MW auf Laufwasserkraftwerke. Nennenswert ist noch die Erzeugung von Elektroenergie aus Grubengas. In Deutschland – Sommer 2015 – existieren 820 Einzelanlagen mit einer Gesamtleistung von 625 MW. Es steht also eine installierte Leistung von 2,257 GW zur Verfügung. Da auch die Erzeugung Strom aus Laufwasserkraftwerken schwankt wird eine gesicherte Leistung von 1.8 GW, 80 %, zugrunde gelegt. Dazu kommen noch gesicherte Leistungen aus Biogas, Biomasse und KWK Anlagen von 12 GW. Die Spitzenlast in Deutschland beträgt bis zu 82 GW.

 

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 3

2. Energiebedarf einer nachhaltigen Gesellschaft

Wie groß wird in der Zukunft der Energiebedarf einer nachhaltigen Gesellschaft in Deutschland sein? Dazu werden im Folgenden die Sektoren Verkehr, private Haushalte, Wirtschaft und Verwaltung sowie der deutsche Anteil am internationalen See- und Flugverkehr untersucht. Doch zunächst eine grundsätzliche Betrachtung der Energiewende.

2.1. Energie neu denken

Nach der Einschätzung der Bundesregierung „…beruht die Energiewende darauf, die Energieeffizienz zu steigern, den Energieverbrauch zu senken und die erneuerbaren Energien weiter auszubauen… [2.1b] Energieeffizienz bedeutet, die verfügbare Energie besser zu nutzen. [2.1c]

Abgesehen von der begrifflichen Schwäche der Bundesregierung, ausgerechnet unter Vorsitz einer Physikerin: Für mich bedeutet Energiewende einfach: Wir steigen von fossilen Energieträgern auf erneuerbare Energieträger um und stellen Energie bevorzugt dort bereit, wo sie gebraucht wird. Gelegentlich in zentralen Großkraftwerken, aber hauptsächlich mit dezentralen Generatoren. Wir erzeugen Strom und Wärme mit Millionen von Photovoltaikanlagen und Solarkollektoren auf Wohnhäusern, Industriebauten oder öffentlichen Gebäuden. Wir nutzen den Wind und die Erdwärme mit hunderttausenden Windkraftanlagen und Wärmepumpen. Und es gibt noch viel mehr Beispiele.

Dabei gilt es in erster Linie Sonneneinstrahlung und Wind umwelt- und bürgerverträglich zu nutzen. Beides steht im Überfluss und kostenlos zur Verfügung! Deshalb wäre es eigentlich nicht notwendig, unseren Energiebedarf zu senken. Doch um die Energieversorgung komplett auf erneuerbare Energieträger umzustellen, müssen noch so viele zusätzliche Anlagen gebaut werden, dass es sinnvoll ist, nur die effizientesten Technologien einzusetzen und Strom und Wärme nicht unnötig zu vergeuden.

Mit dem „Nationalen Aktionsplan Energieeffizienz“ will die Bundesregierung erreichen, „…den Primärenergieverbrauch bis zum Jahr 2020 gegenüber 2008 um 20 Prozent zu senken und bis 2050 zu halbieren.“ [2.1b]

Wenn jetzt eine Senkung des – korrekt bezeichnet – Primärenergiebedarfs um kurzfristig 20% bzw. 50% Prozent als gesellschaftliches Ziel ausgegeben wird, verschleiert es die eigentliche Herausforderung. Die erforderliche gesellschaftliche Aufgabe bleibt vage: Zum einen ist der Primärenergieeinsatz, wie die im letzten Absatz genannten Zahlen zeigen, durch schlechte Effizienzzahlen (das Verhältnis aus nutzbarer Energie zu eingesetzter Energie in einer technischen Anlage) [2.1c] und Transportverlusten bei der Bereitstellung als Endenergie geprägt. So betrug zum Beispiel der Wirkungsgrad von Stromerzeugungsanlagen mit fossilen Brennstoffen im Jahr 2014 nur 46,0 Prozent (die Effizienz war noch viel schlechter…). Für die Endverbraucher wurde so weniger als die Hälfte der eingesetzten Energie in Form von Strom nutzbar gemacht. [2.1e] Zusätzlich entstehen bei der Stromverteilung Verluste zwischen 6 und 7 Prozent. [2.1f] Es ist richtig, dass eine Verbesserung der Wirkungsgrade sowie eine Effizienzsteigerung in der privaten und industriellen Energienutzung den Primärenergiebedarf senkt. Doch leider sagt das erstens nichts darüber aus, ob auch der Anteil an der Nutzung fossile Energieträger zurückgeht. Zweitens macht die Betrachtung eines Primärenergiebedarfs keinen Sinn mehr, wenn ausschließlich die im Überfluss vorhandene Energie von Sonne und Wind genutzt wird: Zum Beispiel liegt der Wirkungsgrad von PV-Modulen zur Stromerzeugung aus Sonnenlicht heute im Bereich von nur 20 Prozent (plus minus 4%). Demzufolge ist die rechnerisch nutzbare Primärenergie fünfmal so groß wie die erzeugte Strommenge aus den Solarzellen. Je mehr Photovoltaikmodule eingesetzt werden, desto mehr würde rechnerisch der Primärenergieeinsatz in Deutschland steigen, die Kennzahl „Primärenergieverbrauch“ verliert also an Aussagekraft…abgesehen davon, dass der Begriff physikalisch unsinnig ist. Sigmar Gabriel hat es vor laufender Kamera bei einer energiepolitischen Veranstaltung ganz richtig zugegeben: Wir Politiker verstehen von den Dingen, über die wir sprechen gar nicht genug, um das Richtige zu tun…

Verabschieden wir uns also von der Betrachtung der Primärenergie. Die gesellschaftliche Aufgabe ist es, so schnell wie möglich auf den Einsatz von fossilen Brennstoffen zur Strom- und Wärmeerzeugung und beim Transport von Personen und Gütern zu verzichten und als Energiequelle hauptsächlich Sonne und Wind zu nutzen!

2.2. Mobilität ohne fossiles Mineralöl

Im Verkehrsbereich wird in Deutschland am meisten Endenergie eingesetzt. Im Jahr 2014 waren es 731 TWh oder 30,4% der Endenergie. [2d] Hiervon wurden 92,8% (678 TWh) aus Mineralöl bereitgestellt. [2d] Das muss so nicht bleiben: Wir können auf fossiles Mineralöl als Energieträger vollständig verzichten!

Der Elektromotor besitzt gegenüber dem Verbrennungsmotor einen mehr als 3,5-fach höheren Wirkungsgrad. [2.2a] Schon vor langer Zeit wurden elektrifizierte Eisenbahnen, Omnibusse und PKW gebaut, um Personen und Güter zu transportieren. U- und S-Bahnen fahren seit Jahrzehnten elektrisch. Elektrobusse mit Oberleitung waren schon vor 50 Jahren weltweit im Einsatz. In jüngster Zeit sind nun auch in Deutschland Batteriebusse wieder erfolgreich im Linienverkehr. [2.2b], [2.2c] Der chinesische Batteriehersteller „Build Your Dream“ (BYD) entwickelt einen Linienbus mit einer Reichweite ca. 250 Kilometern und die amerikanische Firma Proterra Inc. bietet einen Elektrobus mit einer noch größeren Reichweite an. [2.2d] Neben dem Schienen-Fernverkehr kann auch der öffentliche Nahverkehr vollelektrisch betrieben werden. Das gilt auch für den Individualverkehr. Schon 1996 brachte der amerikanische Autokonzern General Motors das batteriebetriebene Elektroauto EV1 mit einer Reichweite von bis zu 300 Kilometern als Leasingmodell auf den Markt. Innerhalb kurzer Zeit wurde der EV1 zu einem „Kult-Auto“, doch General Motors stoppte die Produktion und holte die 1117 produzierten Autos zur Verschrottung zurück. [2.2e] Deutsche Automobilhersteller bieten bisher nur Elektro-PKWs mit einer Reichweite von wenig über 100 km an. In China baut und verkauft die Daimler AG bereits zusammen mit dem chinesischen Batteriehersteller BYD in China den Mittelklasse-PKW „Denza“. Er fährt mit einem vollelektrischen Antrieb und einer Reichweite von mehr als 300 Kilometer. [2.2f] In Europa wird jetzt von der Fenecon GmbH der „BYD E6″ mit einer Reichweite von bis zu 400 Kilometern angeboten [2.2g] Nach der Limousine Modell S mit einer Reichweite von bis zu 630 Kilometern und dem Model X als Placebo für den verunsicherten SUV-Fahrer hat der amerikanische Autobauer Tesla nun auch seinen Mittelklassenwagen „Model 3“ vorgestellt. Mit einer Reichweite von circa 350 Kilometern soll er ab Ende 2017 für ca. 35.000 Euro verkauft werden. [2.2h] In einem Interview im September 2015 kündigte der Daimler-Entwicklungschef Thomas Weber an, dass bald ein „Tesla-Gegner“ auf den Markt kommt. Daimler arbeite an einem intelligenten Konzept für ein hochattraktives E-Fahrzeug mit 400 bis 500 Kilometern Reichweite [2.2i]. Auch der VW-Entwicklungsvorstand Dr. Neußer hielt bereits im Januar 2014 in einem Interview die Entwicklung von Batterien, die eine Reichweite von 500 Kilometer erlauben, bis zum Ende dieses Jahrzehnts für möglich. [2.2j] Die nächste Generation des Nissan LEAF wird eine ähnliche Reichweite bieten. [2.2k]

Der Güterverkehr könnte nahezu vollständig auf eine elektrifizierte Bahn wechseln, sofern einige wesentliche Voraussetzungen geschaffen werden:

– Mindestens zweispuriger Ausbau aller Bahnstrecken
– Vollständige Elektrifizierung aller Bahnstrecken
– Eine neue Generation von Güterwaggons mit Stromabnehmern, elektrischen Radscheibenantrieben mit Rückeinspeisung der Bremsenergie,
– eigenen Batteriespeichern an jedem Waggon, (last mile autonomous drive)
– Neu- oder Wiederanschluss von Gewerbegebieten
– Langfristige Umrüstung des Schienengüterverkehrs auf subterrane Infrastruktur

Batteriebetriebene LKWs und Nutzfahrzeuge können weite Teile die regionale Verteilung der Güter erledigen. Im Rahmen des Projektes „Elektromobilität in Modellregionen“ der Bundesregierung wurde in Berlin der Einsatz elektrisch angetriebener Nutzfahrzeuge im städtischen Lieferverkehr bereits getestet. In Stuttgart hat ein Praxistest von batteriebetriebenen Sechstonner-LKWs begonnen und ein Lebensmittelspediteur zieht nach zehn Monaten Einsatz seines Elektro-LKWs eine sehr positive Bilanz [2.2l]

Der echte Knaller aber kommt von der RWTH Aachen und der Deutschen Post AG: Die bauen uns setzen bereits Elektrotransporter in Serie ein. Eine Eigenentwicklung ohne die deutsche Automobilindustrie. An etlichen Verteilzentren entstehen bereits Ladestationen. Leider nicht öffentlich.

Eine umfangreiche Liste von Elektro-Nutzfahrzeugen und Elektro-Nutzfahrzeug-Prototypen findet im Anhang unter dem Literaturhinweis [2.2m] Für den Gütertransport auf Fernstraßen wurde von der Siemens AG in einem Forschungsprojekt das Konzept eines Oberleitungs-LKW entwickelt und die technische Machbarkeit nachgewiesen. [2.2n] Auch der Einsatz von nach dem „Power to Liquid“-Verfahren hergestelltem synthetischen Kraftstoff ist eine Option. [2.2.o]

Bisweilen wird immer noch das Konzept des Einsatzes von wasserstoffangetriebenen Verkehrsmitteln vorangetrieben. Doch sowohl Transport als auch Lagerung von Wasserstoff sind jedoch technisch wesentlich aufwendiger als Stromtransport oder Stromspeicherung der Elektrofahrzeuge. Es müsste zudem eine anspruchsvolle Wasserstoff-Infrastruktur geschaffen werden, die ein Vielfaches der Kosten einer flächendeckenden Struktur elektrischer Ladesäulen verursacht. Der Wartungsaufwand von wasserstoffbetriebenen Fahrzeugen ist wesentlich höher als der von batteriebetriebenen, der Wirkungsgrad eines Wasserstoffmotors liegt nur wenig über dem eines Benzin- oder Dieselmotors.[2.2p] Zwar kann Wasserstoff durch ein Elektrolyseverfahren mit Strom aus Erneuerbaren Energien umweltfreundlich erzeugt, dann in einer Brennstoffzelle wieder zum Antrieb eines Elektromotors genutzt werden, doch liegt der Wirkungsgrad eines solchen Fahrzeugs zur Zeit in der Größenordnung von höchstens einem Drittel gegenüber dem eines batteriebetriebenen Elektrofahrzeugs. [2.2q] Das Argument einer größeren Reichweite von Fahrzeugen mit Brennstoffzellen wird bereits in wenigen Jahren durch die aktuellen Weiterentwicklungen in der Batterie- und Kondensatorentechnik [2.2r] nicht mehr relevant sein.

Für den Schiffsverkehr wird intensiv an Möglichkeiten zur Energieeinsparung unter anderem durch den Einsatz von Windströmung nutzenden Flettner-Rotoren und einer Schiffsroutenoptimierung geforscht. [2.2s]. Die Verlagerung von Güterferntransporten auf ein hochleistungsfähiges Schienensystem bietet allerdings effizientere Optionen. Die Leichtbauweise von Frachtschiffen ähnlich wie bei Yachten mit einer deutlichen Gewichtsreduzierung und einer entsprechend größeren Zuladung ist für die Zukunft denkbar. Es ist heute bereits deutlich erkennbar, in welchem Umfang Elektromotoren als Schiffsantrieb (zum Beispiel für kurze Fährfahrten oder den küstennahen Personen- und Gütertransport [2.2t]) zukünftig eingesetzt werden. Das mit hohen Schadstoffemissionen verbundene Schweröl als Kraftstoff muss auf jeden Fall kurzfristig ersetzt werden. Eine Möglichkeit für die Zukunft ist der Einsatz von aus erneuerbarem Strom und CO2 nach dem „Power to gas“- oder „Power to Liquid“-Verfahren hergestellter Kraftstoff. [2.2v] Auch die Herstellung von flüssigem Kraftstoff aus Algen ist möglich. Im Forschungsprojekt „Aufwind“ des Bundesministeriums für Ernährung und Landwirtschaft wird aktuell die Optimierung einer Ölproduktion aus Algen untersucht. [2.2w]. Darüber hinaus bieten innovative Konzepte wie die „Neue Seidenstraße“ oder die mögliche Unterquerung der Beringstraße per Bahn immense und effizientere Verlagerungsmöglichkeiten für den internationalen Güterverkehr in Containern vom Schiff auf neue, vollelektrifizierte Schienenwege.

Im innerdeutschen Flugverkehr wurden im Jahr 2014 als Turbinenkraftstoff 101 TWh, beziehungsweise 13,8% der Energie des Verkehrsbereiches eingesetzt. [2.2x] Mit einem von der Siemens AG entwickelten Elektromotor hat ein Kunstflugzeug bereits erfolgreiche Testflüge absolviert. Zusammen mit dem Airbus-Konzern arbeitet Siemens an der Entwicklung eines zunächst teilelektrischen und später dann rein-elektrisch angetriebenen Linienflugzeuges mit bis zu 100 Passagieren [2.2y] Weiterhin ist auch im Flugverkehr der Einsatz von Kraftstoffen aus dem „Power to Liquid“-Verfahren oder aus Algen [2.2z] eine Alternative.

Bereits heute steht eine Vielzahl von energiesparenden Technologien zur Verfügung. Durch Elektroantriebe im Verkehr, durch weitere Effizienzsteigerung der Antriebstechnik und durch Optimierung einschließlich einer Reduzierung der Warenströme innerhalb Deutschlands scheint es uns damit aus heutiger Sicht möglich, den zukünftig erforderlichen Energiebedarf für den Verkehrsbereich auf ein Drittel des heutigen Bedarfs zu senken: Also von 731 TWh auf nur noch 244 TWh. Zu den Möglichkeiten gehören auch neue Konzepte wie einen massiven Ausbau des Schienenverkehrs auf zwei getrennten Systemen (Güter und Personen) und allein aus Platzgründen rein unterirdisch in Angriff zu nehmen.

Für den kurzfristigen Erfolg bei der Senkung der Emissionen und des Energieträgereinsatzes besteht die beste weil einfachste Option jedoch in der rechtlichen und technisch nicht umgehbaren Begrenzung der Höchstgeschwindigkeiten durch Abgleich des Motormanagements und situativer Leistungssteuerung über die Daten der Navigationssysteme und der Verkehrsregelanlagen. Das ist sicherer, einfacher, effektiver und nachhaltiger als Phantastereien vom vollständig autonomen Fahren.

2.3. Behaglich Wohnen mit wenig Energie

Der Wohngebäudebestand in Deutschland setzt sich wohnflächenmäßig zu etwa 40% aus Mehrfamilienhäusern und 60% aus Ein- und Zweifamilienhäusern zusammen. [2.3a]

Bestehende Energieeffizienzhäuser [2.3b] – das sind Häuser mit einem geringen Energiebedarf durch besondere Baukonstruktion und Dämmung zeigen schon heute, wie sich die Energie in Wohnimmobilien ohne fossile Energieträger bereitstellen lässt: Die Photovoltaik [2.3c] zur Stromerzeugung mit Sonnenlicht, die Solarthermie [2.3d] als Teil der Warmwasserversorgung und die Nutzung natürlicher Wärme und Kälte durch Eisspeicher vermittels Wärmepumpen [2.3f] für die Raumheizung oder auch zur Kühlung der Wohnräume. Eine gute Wärmedämmung und der Einsatz von effizienten Haushaltsgeräten Beleuchtung mit LED-Technologie [2.3g] sorgen zusätzlich für einen insgesamt geringen Energiebedarf.

Private Haushalte in Deutschland standen im Jahr 2014 für einen Energiebedarf von insgesamt 615 TWh. Das waren fast 26% des gesamten Endenergieeinsatzes in diesem Jahr. [2.3h] Bezogen auf die bewohnte Wohnfläche von 3,43 Milliarden m² im Jahr 2014 [2.3i] errechnet sich damit ein durchschnittlicher Energieeinsatz von 179 kWh pro m². Im Rahmen des „Modellvorhabens Effizienzhäuser“ wurden bisher 63 Bestandsimmobilien energetisch saniert und ausgewertet. Im Mittel ergab sich nach der Sanierung ein jährlicher Endenergiebedarf von nur noch 54 kWh pro Quadratmeter. [2.3j] Der Wert bei Neubauten liegt noch darunter. Die Steigerung sind „Plusenergiehäuser“, die mehr Energie erzeugen, als sie im Jahr benötigen. Für die Zukunft ist ein durchschnittlicher Energiebedarf von 50 kWh pro Jahr und Quadratmeter sicherlich nicht zu optimistisch geschätzt. Berücksichtigt man zusätzlich eine Erhöhung der Wohnfläche in Deutschland um 15%, so errechnet sich für private Haushalte ein jährlicher Energieeinsatz von dennoch nur 210 TWh, mit andern Worten eine drastische Endenergieeinsparung von 66%.

2.4. Auch Wirtschaft und Verwaltung werden sparen

Die Bereiche „Industrie“ und „Gewerbe, Handel, Dienstleistungen“ (GHD) bezogen im Jahr 2014 zusammen 1.058 TWh, das waren 44 Prozent des deutschen Endenergiebedarfs. [2.4a]. Am 14. Oktober 2012 sprach der damalige Bundesumweltminister Peter Altmaier in der ARD-Sendung „Bericht aus Berlin“ von einem Energieeinsparpotential deutscher Industrieunternehmen von 30%. In der Studie „Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien Einsparpotenziale, Hemmnisse und Instrumente“ der Fraunhofer-Gesellschaft [2.4b] wurden 200 Maßnahmen zur Energieeinsparung untersucht: Bei mehr als 90% Prozent der Einsparmaßnahmen würden den Unternehmen durch die eingesparten Energiekosten keine zusätzliche Kosten entstehen. Es könnten oft sogar noch zusätzliche Gewinne erzielt werden. Die möglichen Maßnahmen würden jedoch häufig nicht umgesetzt, da die Unternehmer negative Auswirkungen auf die Produktionsabläufe und die Produktqualität befürchteten. Auch würde häufig gefordert, dass sich eine Investition zur Energieeinsparung in weniger als drei Jahren „rechne“, was jedoch oft nicht erreicht werde. [2.4c]

Auch die „Deutsche Energie-Agentur“ verweist 2013 auf hohe Energieeinsparpotentiale in Industrie und Gewerbe bei

Beleuchtung: von 70%
Druckluft: von 50%
Pumpensysteme: von 30%
Kälte- und Kühlwasseranlagen: von 30%
Wärmeversorgung: von 30%
Lüftungsanlagen: von 25%
[1.3d]

Das „Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit“ schätzt aktuell das Energieeinsparpotential in den Bereichen „Industrie“ und „Gewerbe“ auf bis zu 40%. [2.4e] Rechtliche Vorgaben und Förderprogramme halfen und helfen Unternehmen diese Effizienzpotentiale zu erschließen: Ökodesign-Richtlinie, Förderprogramme der Klimaschutz-Initiative des Bundesumweltministeriums, das ERP-Umwelt- und Energieeffizienzprogramm der KfW-Bank, dazu verschiedene Informationskampagnen. Die Einführung von Energiemanagementsystemen (zum Beispiel gemäß der Norm DIN EN ISO 50001) ermöglichen nahezu immer insbesondere in Unternehmen wirtschaftliche Effizienzpotenziale zu erkennen und zu erschließen. [2.4f]

Strukturelle wirtschaftliche Veränderungen mit ihren möglichen Energieeinsparungen und zusätzlicher Energiebedarf durch Einsatz neuer Technologien sind über einen längeren Zeitraum nur sehr schwer zu prognostizieren. Es lässt sich aber sagen, dass ein Umdenken hin zu möglichst langlebigen Verbrauchsgütern zu weniger Energieeinsatz in Produktionsprozessen führen wird. Im Tagungsband zur Jahrestagung 2015 erwartet der „Forschungsverbund Erneuerbare Energien“ ein Energieeinsparpotential von nur 14 % des gesamten Endenergiebedarfs der Sektoren Industrie und GHD. [2.4g] Ich bin optimistischer, da in Industrieunternehmen auch ein erhebliches Einsparpotential durch die Optimierung von Produktionsstraßen und -abläufen besteht. [2.4h] Für die weiteren Abschätzungen gehen wir daher von einer zukünftigen Reduzierung des Endenergiebezugs im Bereich Wirtschaft und Verwaltung in Höhe von 30% und einem zukünftigen Verbrauch von 741 TWh aus. Allerdings wird sich dieser Effekt nicht in der gewünschten Zeitspanne von allein einstellen, solange die Politik die Wirtschaft nicht klar in die Pflicht nimmt und die Nutzung von verbilligtem Strom aus Atomkraft und fossilen Brennstoffen volkswirtschaftlich konsequent und gerecht beendet. Ein Staat darf Projekte der Daseinsvorsorge gern finanzieren, aber keinesfalls mehr durch Übernahme der Investitionen oder einseitige Vergütungsgarantien auf Kosten der Steuerzahler bestimmte Sektoren oder Produzenten protegieren.

Insgesamt ergibt sich so für die Bereiche Verkehr, private Haushalte, Wirtschaft und Verwaltung zusammen ein Endenergieeinsatz von 1.194 TWh. Das sind nur noch 49,7% der im Jahr 2014 in Deutschland aufgewendeten Endenergie. Ein ähnliches Einsparungspotential errechnet auch das Umweltbundesamt in seiner Studie „Treibhausgasneutrales Deutschland im Jahr 2050“, wenn es von einer Halbierung des Endenergieeinsatzes des Jahres 2010 (2.588 TWh) im Jahr 2050 ausgeht. [2.4i]

2.5. Anteil am internationalen See- und Flugverkehr

Abschließend wird der Anteil der deutschen Volkswirtschaft am Energiebedarf des internationalen See- und Luftverkehrs betrachtet. Hier folgen wir einer Abschätzung aus der Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes:

Für den internationalen zivilen Luftverkehr geht das Umweltbundesamt von einer jährlichen Effizienzsteigerung von 2% jährlich aus. Das gesetzte Ziel der „International Civil Aviation Organization“ (Internationale Zivilluftfahrtorganisation). [2.5a] Auch für die Seeschifffahrt wird eine erhebliche Effizienzsteigerung bis zum Jahr 2050 von insgesamt 39% (im Vergleich zum Jahr 2007) angesetzt. [2.5b] Für den Personenverkehr rechnet das Umweltbundesamt mit einem Endenergiebedarf im Jahr 2050 von 266 TWh, für den Güterverkehr von 185 TWh und für den gesamten Verkehrsbereich inklusive der Seeschifffahrt mit einem Bedarf von 625 TWh. [2.5c] Es ergibt sich also ein „Aufschlag“ von 174 TWh für den Anteil am internationalen Verkehr.

Bei diesem zusätzlichen Energiebedarf ist aber noch nicht berücksichtigt, dass dann ein Teil der Kraftstoffmenge unter Umständen nicht aus Biomasse (zum Beispiel Algen), sondern synthetisch aus erneuerbarem Strom erzeugt wird. Der künstliche Kraftstoff aus dem „Power-to-Liquid-Verfahren“ bietet am Ende eine Effizienz von bestenfalls ca. 25% Prozent [2.5d] wird also dafür die vierfache elektrische Energie benötigen. Nimmt man an, dass die Hälfte der Kraftstoffe für den internationalen Verkehr aus Biomasse stammt und die andere Hälfte synthetisch mit erneuerbarem Strom hergestellt wird, so erhöht sich dieser Aufschlag um 100 Prozent auf ca. 350 TWh.

Abschließend unsere Abschätzung des zukünftigen Endenergiebedarfs in einer Übersicht:

Mobilität: 244 TWh
Private Haushalte: 210 TWh
Wirtschaft und Verwaltung: 741 TWh
Anteil am internationalen Verkehr: 350 TWh.

Zusammen ergibt sich also ein für Deutschland von Endenergie-Bedarf von 1.550 TWh. 2014 waren es noch 2.404 TWh.

Der (End-)Energie-Einsatz in Deutschland lässt sich nahezu halbieren !

Literaturverzeichnis und Anmerkungen:

2. Energieverbrauch einer nachhaltigen Gesellschaft

2.1. Energie neu denken

[2.1a]
Mittelwert der ausgewerteten Studien, siehe Bericht 2011 des „Weltklimarats“ IPCC (Intergovernmental Panel on climate change), der von der Weltorganisation für Meteorologie (WMO) und dem Umweltprogramm der Vereinten Nationen (UNEP) 1988 gegründet wurde:

http://srren.ipcc-wg3.de/ipcc-srren-generic-presentation-1
http://cms.srren.ipcc-wg3.de/report/srren-spm-fd4/at_download/file

(jeweils aufgerufen am 3.4.2016)

[2.1b]
Die Bundesregierung hat einen „Nationalen Aktionsplan Energieeffizienz“ mit dem Ziel entwickelt, den Primärenergie-Verbrauch (siehe

http://www.bmwi.de/DE/Mediathek/publikationen,did=672756.html)

durch Effizienzsteigerungsmaßnahmen der Verbraucher, der Industrie und der Verwaltung bis zum Jahr 2020 gegenüber dem Jahr 2008 um 20% zu senken und bis 2050 zu halbieren:
http://www.bmwi.de/DE/Mediathek/publikationen,did=672756.html

Die zugehörige Website des Bundesministeriums für Wirtschaft und Energie:

http://www.bmwi.de/DE/Themen/Energie/Energieeffizienz/nape.html

(aufgerufen am 3.4.2016)

[2.1c]
Duden online, Begriffserklärung „Energieeffizienz“
http://www.duden.de/suchen/dudenonline/Energieeffizienz

siehe die Begriffserklärung (Glossar) der Bundesregierung zum Thema „Energie“ unter anderem mit einer Erklärung der Begriffe „Primärenergie“, „Endenergie“ und „Wirkungsgrad“:
https://www.bundesregierung.de/Content/DE/StatischeSeiten/Breg/FAQ/faq-energie.html

[2.1d]

Der Primärenergie-Verbrauch und Endenergie-Verbrauch im Jahr 2014 in Deutschland: Siehe die Energiedaten (in Petajoule) des Bundesministeriums für Wirtschaft und Energie, Tab. 5 und Tab. 7, Stand 12.1.2016.
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

Die Einheit „Petajoule“ (PJ) entspricht 0,278 TWh:
Energiedaten (in Petajoule) des Bundesministeriums für Wirtschaft und Energie, Tab. 0.2, Stand 12.1.2016.
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.1e]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 8b, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.1f]
Monatsbericht über die Elektrizitätsversorgung
https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/Energie/Erzeugung/Tabellen/BilanzElektrizitaetsversorgung.html
(Aufruf am 13.3.2016)

2.2. Mobilität ohne Mineralöl

[2.2a]
In der Projektbroschüre „Erneuerbar mobil – Marktfähige Lösungen für eine klimafreundliche Elektromobilität“ (Seite 5, Stand April 2012) des Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit wird der Gesamtwirkungsgrad (inklusive der Bereitstellung des Kraftstoffes) beim Ottomotor mit 19 Prozent, beim Brennstoffzellenauto mit 26 Prozent und beim Elektroauto: mit 70 Prozent angegeben.http://www.erneuerbar-mobil.de/de/mediathek/dateien/broschuere-erneuerbar-mobil-2012-dt.pdf

(Aufruf am 13.3.2016)

[2.2b]
siehe z. B. https://de.wikipedia.org/wiki/Oberleitungsbus

(Aufruf am 13.3.2016)

[2.2c]
Die Berliner Verkehrsbetriebe setzten inzwischen ebenfalls vier vollständig elektrisch betriebene Linienbusse ein:

http://www.bvg.de/de/Aktuell/Newsmeldung?newsid=772

und auch in Dresden hat gerade ein Schnelllade-Batteriebus nach einem halben Jahr im Linienbetrieb die Alltagsfähigkeit und die Vorteile eines Batterie-Elektrobusses unter Beweis gestellt:

http://www.pressebox.de/pressemitteilung/vossloh-kiepe-gmbh/Meilenstein-der-Elektromobilitaet-Auszeichnung-fuer-Projekt-SEB-Schnellladung-Elektro-Bus/boxid/752809

(Aufruf am 13.3.2016)

[2.2d]
https://fenecon.de/page/e-mobilitat

sowiehttp://www.wiwo.de/technologie/green/tech/elektro-bus-415-kilometer-mit-einer-akkuladung/13552864.html und http://www.proterra.com/product-tech/product-portfolio/

[2.2e]
Wer brachte das Elektroauto „EV1“ um?
http://www.wattgehtab.com/elektroautos/wer-brachte-das-elektroauto-ev1-um-1893

Warum das Elektroauto sterben musste:https://www.youtube.com/watch?v=Jzn_1y0UtUk

[2.2f]
Automobilproduktion: „Fahrbericht Elektroauto: BYD Denza“, 2.9.2014:

http://www.automobil-produktion.de/2014/09/naegel-mit-koepfen-byd-denza/

(Aufruf am 13.3.2016)

[2.2g]https://fenecon.de/blog/neues-von-fenecon-1/post/elektroautos-von-byd-fenecon-startet-verkauf-des-e6-26

(Aufruf am 17.3.2016)

[2.2h]
Die Vorstellung des Elektroauto „Tesla Model 3“ in den USA am 31.13.2016:
http://www.heise.de/newsticker/meldung/Elektroautos-Tesla-Model-3-kommt-Ende-2017-ab-35-000-US-Dollar-3159967.html und
https://www.youtube.com/watch?v=jPn7qLSwgmk

[2.2i]
auto motor und sport: Interview am 2. September 2015 mit dem Entwicklungschef Thomas Weber der Daimler AG:

http://www.auto-motor-und-sport.de/news/interview-mit-daimler-entwicklungschef-thomas-weber-9952655.html

(Aufruf am 13.3.2016)

[2.2j]
tz „Pläne und Ziele – Pick-Ups? Nichts für VW“, 17.1.2014
http://www.tz.de/auto/vorstand-heinz-jakob-neusser-ueber-plaene-ziele-zr-3319408.html

(Aufruf am 13.3.2016)

[2.2k]
ecemento das Elektroautoportal „Nissan testet Elektroauto mit über 500 Kilometer Reichweite“, 29.6.2015

http://ecomento.tv/2015/06/29/nissan-elektroauto-ueber-500-kilometer-reichweite/

(Aufruf am 13.3.2016)
Eine Reichweite von 500 Kilometer hat der neue „Tesla Roadster“ anscheinend aber bereits übertroffen: „Tesla Roadster: Neues Modell schafft 640 Kilometer“, ComputerBild.de, 2.9.2015

http://www.computerbild.de/artikel/cb-News-Connected-Car-Tesla-Roadster-Neues-Modell-schafft-640-Kilometer-11247487.html

(Aufruf am 13.3.2016)

[2.2l]
Modellregionen Elektromobilität in Deutschland:

http://de.academic.ru/dic.nsf/dewiki/2512063#Berlin-Potsdam

Elektro-Lkw bei Meyer Logistik: Der Neun-Liter-Laster:

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/6626/maerkte-amp-trends/elektro-lkw-bei-meyer-logistik-der-neun-liter-LKW

„Stuttgart und das Logistikunternehmen Hermes erproben in einem Flottentest den Einsatz
von batteriebetriebenen Sechstonner-LKW im Betriebsalltag“:

http://www.automobil-industrie.vogel.de/stuttgart-testet-elektro-lkw-a-529783/

[2.2m]
Liste von Elektro-Nutzfahrzeugen und Elektro-Nutzfahrzeug-Prototypen

https://de.wikipedia.org/wiki/Liste_von_Elektro-Nutzfahrzeugen_und_Elektro-Nutzfahrzeug-Prototypen

[2.2n]
Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: „Im Rahmen des Projektes wurde das Konzept erstmalig auf einer Teststrecke praktisch erprobt und die technische Machbarkeit nachgewiesen: Über längere Strecken ist ein elektri-scher Straßengüterverkehr mit dieselelektrischen Hybridfahrzeugen, die über Stromabnehmer aus einer Fahrleitung elektrische Energie beziehen, technisch möglich sowie ökonomisch und ökologisch sinnvoll.“

http://www.bmub.bund.de/fileadmin/Daten_BMU/Pools/Broschueren/erneuerbar_mobil_2014_broschuere_bf.pdf, Seite 30

ecemento tv das Elektroautoportal: „Siemens testet Oberleitungs-LKW (Video)“, 11.8.2014

http://ecomento.tv/2014/08/11/siemens-testet-oberleitungs-lkw-video/

(Aufruf am 13.3.2016)

[ 2.2o]
Umweltbundesamt: „Treibhausgasneutraler Güterverkehr ist nötig – und möglich“:

https://www.umweltbundesamt.de/presse/presseinformationen/treibhausgasneutraler-gueterverkehr-ist-noetig

[ 2.2p]
BMW: „BMW Wasserstoffmotor erreicht Spitzenwirkungsgrad“, 12.03.2009

http://www.bmwarchiv.de/artikel/2009-03-12-bmw-wasserstoffmotor-erreicht-spitzenwirkungsgrad.html

(Aufruf am 13.3.2016)

[2.2q]
Wikipedia

https://de.wikipedia.org/wiki/Brennstoffzellenfahrzeug

(Aufruf am 13.3.2016)

[2.2r]
Fraunhofer – Forschung kompakt, Juli 2014

http://www.fraunhofer.de/content/dam/zv/de/presse-medien/2014/Juli/fk07_2014_JULI.pdf

(Aufruf am 13.3.2016)

Wikipedia

https://de.wikipedia.org/wiki/Superkondensator

(Aufruf am 13.3.2016)

[2.2s]
Flettner-Rotoren als Schiffsantriebsunterstützung:

https://de.wikipedia.org/wiki/Flettner-Rotor

Enercon: E-Ship 1

http://www.enercon.de/de/aktuelles/e-ship-1-erhaelt-klassenerneuerung/

Forschungsprojekt „MariGreen“

http://www.mariko-leer.de/projekte/marigreen/

[2.2t]
Heise online: „Roboterschiff mit Elektro-Antrieb“

http://www.heise.de/newsticker/meldung/Roboterschiff-mit-Elektro-Antrieb-2411559.html?wt_mc=rss.ho.beitrag.pdf

[2.2v]
Strategieplattform Power to Gas:

http://www.powertogas.info/

Im niedersächsischen Ort Werlte wurde in Kooperation mit der Audi AG eine erste industrielle Versuchsanlage aufgebaut. Technische Daten zum Konzept und zur Anlage finden sich hier:

http://www.etogas.com/

Die Firma „sunfire“ aus Dresden (http://www.sunfire.de/en/) stellt aus Kohlendioxid, Wasserdampf und regenerativer elektrischer Energie flüssige Kraftstoffe her und wurde für ihre Technologie bereits ausgezeichnet: https://www.fona.de/de/20506

[2.2w]
Bundesministerium für Ernährung und Landwirtschaft, Pressemitteilung 16.5.2013:
„Abheben mit Kerosin aus Algen: Bundesministerium fördert Entwicklung von nachhaltigem Biokerosin für Flugzeuge“

http://www.bmel.de/SharedDocs/Pressemitteilungen/2013/145-Projekt-Biokerosin-aus-Algen.html

In Japan fährt ein erster Shuttle-Bus mit Algen-Diesel:
WirtschaftsWoche: Deusel statt Diesel: Bus fährt mit Biosprit aus Euglena-Alge, 8.7.2014
http://green.wiwo.de/deusel-statt-diesel-bus-faehrt-mit-biosprit-aus-euglena-alge/

WirtschaftsWoche: Biotreibstoff: Erster europäischer Algensprit kommt aus Italien, 18.3.2014
http://green.wiwo.de/biotreibstoff-erster-europaeischer-algensprit-kommt-aus-italien/

WirtschaftsWoche: Bakterien-Treibstoff: Start-up plant kommerzielle Anlage in den USA, 26.5.2015
http://green.wiwo.de/bakterien-treibstoff-startup-plant-kommerzielle-anlage-in-den-usa/

WirtschaftsWoche: Mobilität: Algendiesel billiger als Sprit aus Erdöl, 6.6.2013

http://green.wiwo.de/mobilitat-der-erste-bezahlbare-algendiesel-kommt-aus-brasilien/

Ingenieur.de: „Biosprit aus Algen günstiger produzieren“, 21.9.2013

http://www.ingenieur.de/Fachbereiche/Bioenergie/Biosprit-Algen-guenstiger-produzieren

WirtschaftsWoche: „Innovation: Kommt Algensprit bald aus Deutschland?“, 6.6.2013

http://green.wiwo.de/innovation-kommt-algensprit-bald-aus-deutschland/

[2.2x]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6a, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.2y]
„Weltrekord-Elektromotor für Flugzeuge“:
http://www.siemens.com/press/de/feature/2015/corporate/2015-03-electromotor.php?content[]=Corp

04.07.2016

„Erstes Linienflugzeug könnte 2030 teilelektrisch fliegen“:
http://www.golem.de/news/airbus-und-siemens-erstes-linienflugzeug-koennte-2030-teilelektrisch-fliegen-1604-120215.html

weitere Projekte: „Elektromobilität geht auch in der Luft“
http://www.golem.de/news/airbus-e-fan-2-0-elektromobilitaet-geht-auch-in-der-luft-1506-114625.html

[2.2z]
Bundesverband der Deutschen Luftverkehrswirtschaft:
http://www.bdl.aero/de/themen-positionen/umwelt/biokraftstoffe/

„report 2015 Energieeffizienz und Klimaschutz“, Seite 16f

http://www.die-vier-liter-flieger.de/media/filer_public/2015/08/05/energieeffizienz_klimaschutz_2015.pdf

2.3 Behaglich wohnen mit wenig Energie

[2.3a]
Forschungsverbund Erneuerbare Energien, Berlin: Tagungsband zur FVEE-Jahrestagung 2015 „Forschung für die Wärmewende“

http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 55f

[2.3b]
Wikipedia: „Effizienzhaus”

https://de.wikipedia.org/wiki/Effizienzhaus

[2.3c]
Wikipedia: „Photovoltaik”
https://de.wikipedia.org/wiki/Photovoltaik

SolarServer – Das Internetportal zur Solarenergie
http://www.solarserver.de/wissen/basiswissen/photovoltaik.html

Bundesverband Solarwirtschaft

https://www.solarwirtschaft.de/ueber-uns.html

[2.3d]
Wikipedia: „Solarthermie”

https://de.wikipedia.org/wiki/Solarthermie

SolarServer Das Internetportal zur Solarenergie

http://www.solarserver.de/wissen/basiswissen/solarthermie.html

Bundesverband Solarwirtschaft

https://www.solarwirtschaft.de/unsere-themen-solarthermie.html

[2.3e]

Wikipedia: „Oberflächennahe Geothermie“

https://de.wikipedia.org/wiki/Geothermie#Oberfl.C3.A4chennahe_Geothermie

Bundesverband Geothermie:
http://www.geothermie.de/wissenswelt/geothermie/technologien/oberflaechennahe-geothermie.html

[2.3f]
Wikipedia: „Wärmepumpen”

https://de.wikipedia.org/wiki/W%C3%A4rmepumpe

Bundesverband Wärmepumpe e. V.

http://www.waermepumpe.de/

[2.3g]
Wikipedia: „LED-Leuchtmittel”
https://de.wikipedia.org/wiki/LED-Leuchtmittel

[2.3h]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 7a,
Stand 12.1.2016:
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

(Aufruf am 13.3.2016)

[2.3i]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 1, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

(Aufruf am 13.3.2016)

[2.3j]
„Auswertung von Verbrauchskennwerten energieeffizient sanierter Wohngebäude“

http://www.zukunft-haus.info/fileadmin/media/05_gesetze_verordnungen_studien/01_fachwissen_kompakt/02_studien/2013_03_Zusammenfassung_dena-Studie_Verbrauchauswertung.pdf

2.4. Auch Wirtschaft und Verwaltung werden sparen

[2.4a]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 6a, Stand 12.1.2016:
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html
(Aufruf am 8.4.2016)

[2.4b]
http://www.verlag.fraunhofer.de/bookshop/buch/Energieverbrauch-und-CO2-Emissionen-industrieller-Prozesstechnologien-Einsparpotenziale-Hemmnisse-und-Instrumente/239044

[2.4c]
https://www.energie.fraunhofer.de/de/presse/pressespiegel/studie-energieverbrauch-und-co2-emissionen-industrieller-prozesstechnologien-einsparpotenziale-hemmnisse-und-instrumente

[2.4d]
Deutsche Energie-Agentur (DENA), Vortrag Stephan Kohler „Energieeffizienz: Einsparpotenziale für die deutsche Wirtschaft“, 6. Juni 2013, Seite 22
http://www.dena.de/fileadmin/user_upload/Veranstaltungen/Vortraege_GF/sk/130606_SK_VEA_Mitgliederversammlung_Berlin_Energieeffizienz_-_Einsparpotenziale_fuer_die_deutsche_Wirtschaft.pdf

[2.4e]
siehe Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: „Energieeffizienz Kurzinfo“ unter dem Absatz „Industrie und Gewerbe“
http://www.bmub.bund.de/themen/klima-energie/energieeffizienz/kurzinfo/

[2.4f]
Umweltbundesamt, Themenbereich „Energiesparen in Industrie und Gewerbe“
http://www.umweltbundesamt.de/themen/klima-energie/energiesparen/energiesparen-in-industrie-gewerbe

Ökodesign-Richtlinie:

http://www.umweltbundesamt.de/themen/wirtschaft-konsum/produkte/oekodesign/oekodesign-richtlinie-einfuehrung

Klimaschutz-Initiative:

https://www.klimaschutz.de/

ERP-Umwelt- und Energieeffizienzprogramm der KfW-Bank:

https://www.kfw.de/inlandsfoerderung/Unternehmen/Energie-Umwelt/Finanzierungsangebote/Energieeffizienzprogramm-%28242-243-244%29/

https://www.kfw.de/Download-Center/F%C3%B6rderprogramme-(Inlandsf%C3%B6rderung)/PDF-Dokumente/6000002221_M_242_243_244.pdf

DIN EN ISO 50001 für Energiemanagementsysteme:

https://de.wikipedia.org/wiki/ISO_50001

https://www.umweltbundesamt.de/themen/wirtschaft-konsum/wirtschaft-umwelt/umwelt-energiemanagement/energiemanagementsystem-gemaess-iso-50001
https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3959.pdf

[2.4g]
Forschungsverbund Erneuerbare Energien, Berlin: Tagungsband zur FVEE-Jahrestagung 2015 „Forschung für die Wärmewende“
http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 50:

[2.4h]
siehe zum Beispiel:

Fraunhofer Gesellschaft: „Energieeffizienz in der Produktion“
http://www.fraunhofer.de/content/dam/zv/de/forschungsthemen/energie/Studie_Energieeffizienz-in-der-Produktion.pdf

Hochschule Emden-Leer: „Energieeffizienz in der Produktion“
http://www.hs-emden-leer.de/forschung-transfer/projekte/energieeffizienz-in-der-produktion.html

Optimierung

Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung: „Praxisleitfaden Energieeffizienz in der Produktion“

http://upp-kassel.de/wp-content/uploads/2013/09/Praxisleitfaden-Energieeffizienz-in-der-Produktion.pdf

[2.4i]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 87

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

2.5. Anteil am internationalen See- und Flugverkehr

[2.5a]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 113https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5b]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 114

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5c]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 118
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5d]
Umweltbundesamt: „Integration von Power to Gas/Power to Liquid in den laufenden Transformationsprozess“ (2016), Seite 14 Abbildung 4

https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/integration_von_power_to_gaspower_to_liquid_in_den_laufenden_transformationsprozess_web_0.pdf

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Grafenrheinfeld – das Ende eines AKW, und was dann? Antworten auf Fragen eines Bürgers

Fiktives Gespräch zwischen Richard Bethmann (RB), Mitbürger im Regierungsbezirk Unterfranken und Thomas Blechschmidt (TB), Mitglied der AG Energiepolitik der Piratenpartei Deutschland und Energiebeauftragter des Landesverbands Bayern der Piratenpartei.

Das fiktive Gespräch geht auf eine umfangreiche Anfrage von Herrn Bethmann an die Piratenpartei  zurück, die im Dialogstil beantwortet wird.

Richard Bethmann (RB): Interessiert verfolge ich Ihre Energiepolitik. Ich war selbst in der Energiebranche tätig unter anderen im Fachausschuss Kernenergie Deutschland als 2. Vorsitzender, weiterhin in KTA Ausschüssen, Betriebsrat, Kraftwerk usw.

Thomas Blechschmidt (TB): Ihr Interesse freut uns sehr. Etliche unserer AG-Mitglieder sind selbst beruflich mit Energie befasst. Ich arbeite als selbständiger Energiemanager und leite das Regionalbüro München und Südbayern der Fa. ISOCAL. Mein persönlicher Fokus ist Energieeffizienz. Mit Kernenergie waren Sie ja schon befasst. Derzeit sehe ich mit lachendem und weinendem Auge, dass Großbritannien Strom aus Kernenergie mit 11 ct./kWh fester Einspeisevergütung honorieren will. Einen besseren Beweis dafür, dass diese Energieform eben keine Grundlage für billigen Strom hergibt, gibt es nicht. Man könnte noch Erträge für die Energiewende generieren, wenn man einzelne AKW später vom Netz nimmt und die Überschüsse in einen Energiewendefonds steckt. Die Verantwortung für die Risiken übernimmt aber niemand. Diese können nur gemeinsam getragen werden. Und ob sich das mit den zusätzlichen Sicherungskosten für die dann vermehrt anfallenden Abfälle ausgleicht, ist fraglich.

RB: Mein Vorschlag zur EEG ist die Speichermöglichkeiten zusätzlich aufzunehmen.

TB: Diesen Vorschlag haben wir in der AG bereits mehrfach andiskutiert, aber noch nicht zur Position gemacht. In erster Linie wegen Uneinigkeit über die Speichertechnologien, aber auch mangels Detailwissen und Zeit, da wir ehrenamtlich tätig sind. Ich selbst begrüße diese Idee sehr, denn speziell die Speichertechnologien und vor allem ihre Leistungselektroniken bieten sehr preisgünstige Lösungsmöglichkeiten für systemische Probleme. Für weniger als zehn Euro pro Stück sind elektronische Bauteile in Ladesysteme integrierbar, die in Millisekunden reagieren und ausgleichend auf Frequenz- und Spannungsabweichungen wirken. Vergleichen Sie dazu das Konzept I.D.E.E. von Tomi Engel:

http://wiki.piratenpartei.de/Datei:Piratenpartei_Energieworkshop_2013.1_Vortrag_IDEE.pdf

RB: Hier sehe ich zu Batterie Systemen, Pumpspeicherwerken usw. zusätzlich die Power to Gas Möglichkeit für zukunftsweisend.

TB: Wie gesagt:  Wir sind da noch nicht abschließend zu einem Ergebnis gekommen. Das ist aber auch gut so. Ich bin sicher, diese Systeme werden sich gegenseitig ergänzen. Aktuell den größten Entwicklungsspielraum haben Batteriesysteme wie Redox-Flow, die bereits wirtschaftlich betreibbar sind, Li-Ion-Akkus für die Elektromobilität und einige Neuentwicklungen chemischer Elektrizitätsspeicher wie Li-Schwefel oder Li-Polymer auf Basis von extrem dünnschichtigen Elektroden aber auch die Natrium-Schwefel-Batterien, die wir in den deutschen Ländern geflissentlich ignorieren, sind sie doch ein Produkt der japanischen Industrie, die klug genug war, sich das in Deutschland entwickelte aber verschmähte Patent zu sichern und umzusetzen.

Bezeichnend für diese Haltung war zum Beispiel ein Vortrag  am 17.02.2014 im Sparkassenforum in Kaufbeuren von Prof. Hannes Brachat zur Zukunft des Automobils, in welchem der Entwicklungsstand von Elektrofahrzeugen zwar angeschnitten, aber die real existierende Marktführerschaft von Nissan (200.000 zugelassene Nissan LEAF) und TESLA ( ca. 30.000 zugelassene Fahrzeuge aller Modelle) mit keinem Wort erwähnt wurde. Hier gilt es die Scheuklappenmentalität dringend zu überwinden. Das erste Elektroauto war bezeichnender Weise  ein Porsche im Jahr 1898. Die ersten Brennstoffzellenfahrzeuge mit großer Reichweite waren die U-Boote der Walther-Klasse der deutschen Kriegsmarine am Ende des WK II.

RB: Ich sehe aktuell eine Chance für ein Gaskraftwerk mit zusätzlicher Power to Gas Anlage, zum Beispiel in Schweinfurt oder Grafenrheinfeld wo laut momentaner politischer Festlegung das Kraftwerk Ende 2015 stillgelegt wird.

TB: Dieser Vorschlag ist – linear gedacht – logisch und richtig. In der Energiebilanz betrachtet dagegen ungeeignet. Allein der Modus in dem die Umsetzung erfolgt hat erhebliche Verbesserungspotentiale. Kraftwerke werden traditionell zentral an regional gut gelegenen Standorten gebaut. Ihre Größe wird an Hand der aufaddierten Standardlastprofile der im betreffenden Gebiet liegenden Verteilnetze plus der Leistungsverluste in Umspannwerken und Übergabestationen hochgerechnet. Dies bedeutet, dass alle zu erwartenden und theoretisch denkbaren Lastspitzen in allen angeschlossenen Netzen so in die Hochrechnung einfließen, als würden Sie gleichzeitig auftreten. Im Ergebnis sind die Hochrechnungen regelmäßig deutlich überdimensioniert. Meine Recherchen für den Regierungsbezirk Schwaben haben beispielsweise ergeben, dass wir hier 5.000 MW installierte Leistung haben, denen eine höchste jemals im entsprechenden Übertragungsnetz in Summe abgerufene Leistung von 1.972 MW gegenübersteht.

Die erste Aufgabe an der Stelle für Sie wäre es, die Leitzentrale des Übertragungsnetzbetreibers und die lokalen Energieversorger aufzusuchen und die real abgefragten Lasten herauszufinden. Dadurch lässt sich der tatsächliche Bedarf für ein neues Kraftwerk bzw. die tatsächliche Notwendigkeit der „Thüringer Stromtrasse“ evaluieren. Denn die wird sich dann sehr wahrscheinlich als unnötig erweisen. Zumindest für den Transport von Strom aus dem Norden nach dem Süden.

Der für uns wesentliche Aspekt ist aber, dass wir als Piraten für eine deutliche dezentralisiertere Stromversorgung stehen und das Konzept zentraler Großkraftwerke als unwirtschaftlich ablehnen. Die Dezentralisierung in Dänemark beispielsweise ist dort bereits seit 2000 weitgehend umgesetzt und dabei der KWK-Anteil auf rund 60 % hochgegangen, was allerdings auch dem hohen Urbanisierungsgrad Dänemarks geschuldet ist. Dieser wird mit der Zeit sukzessive gegen größere Kapazitäten an generativen Stromerzeugern und Batteriespeichern ausgetauscht werden, soweit Gas sich verteuert und die Alternativen günstiger werden. Aber der unmittelbare Handlungsdruck ist deutlich geringer, vor allem da Dänemark bei der Gebäudeversorgung mit Wärme die Verwendung von degenerativen CO2-Schleudern beendet hat: Kein Öl, und kein Gas-Gerät darf mehr neu verbaut werden und in Kürze auch nicht mehr ersetzt werden. Die Alternative ist Fernwärme aus KWK oder Wärmepumpe mit Strom aus Wind oder PV.

Ein Beispiel für die Probleme mit zentralen Gaskraftwerken ist das Mega GuD-Kraftwerk Irsching bei Ingolstadt. Die Leistung des Geräts beeindruckt und lässt Männerherzen höher schlagen. Nichts desto trotz läuft es kaum, rechnet sich nicht und zu allem Überfluss produziert es so viel Abwärme, dass die in der Umgebung kaum genutzt werden kann. In der Realität ist es nicht mal an die Fernwärme Ingolstadts angeschlossen! Nun sollen es „Kapazitätsmärkte“ richten, sprich: die Erbauer und Betreiber werden für das Errichten und Bereithalten bezahlt. Im Ergebnis werden also die privaten und gewerblichen Endverbraucher dafür zur Kasse gebeten.

RB: Hier könnten Synergieeffekte: Infrastruktur, Netzanbindung, usw. bestens genutzt werden.

TB: Ja, sinnvoll aber nur, wenn an den zentralen Schnittstellen statt großen Kraftwerken große Speicher errichtet werden. Großkraftwerke: Klares Nein. Stellen Sie sich vor, dort in Grafenrheinfeld würde ein GuD-Kraftwerk wie in Irsching gebaut, das die Leistung des AKW 1:1 ersetzt. Dann wären bis zu 2.700 MW Wärme zu verteilen, oder eben ganz schlicht in die Umwelt entsorgt.

Das Kraftwerk kann aber nur dann zuverlässig laufen, wenn die Wärme wirksam abtransportiert wird. Auf die Nutzung der Abwärme zu verzichten wäre wirtschaftlich unsinnig. Was wollen Sie mit so viel Wärme machen bzw. wie groß müsste das Fernwärmenetz sein, dass dann dazu zu errichten wäre?

In der BRD liegt der Wärmebedarf für Wohngebäude derzeit bei ca. 560 TWh, das GuD dort würde bei nur halber Laufzeit pro Jahr ca. 12 TWh Wärme produzieren. Also um die 2% des Bundesgesamtbedarfs. In ganz Unterfranken leben allerdings grade Mal 2% der Bevölkerung. Das Fernwärmenetz müsste dann also ganze Unterfranken bis nahe an Frankfurt reichen, um die Wärme sinnvoll verwenden zu können. Liefe das GuD dann aber wie das AKW die meiste Zeit durch, wäre der Überschuss noch deutlicher.

An dieser Stelle: „Kalte Nahwärmenetze“ sind übrigens effizienter und günstiger.

Fazit: Ein zentrales Kraftwerk am Standort des AKW ist der falsche Weg. Viele kleinere KWK-Anlagen mit weitgehender Nutzung der Abwärme sind sinnvoller. Da wäre ein Großspeicher mit 3 GW zu errichten. Am Anfang steht aber eine Erfassung der real auftretenden Leistungsabrufe (Lasten) und ein Vergleich mit den bisher hochgerechneten Standardlastprofilen.

Gleiche Voraussetzungen gelten natürlich auch für die Forderungen aus dem Raum Leipheim für ein GuD als Ersatz für Gundremmingen.

RB: Zu Speichertechnologien könnten vermutlich ca. 30 % EU Förderung genutzt werden. Zusätzlich eventuell Sonderförderungen von EU, Bund, Land usw.

TB: Förderung ist immer erfreulich. Allerdings gehört dazu die transparente Aufrechnung der Förderung zur Ermittlung der realen volkswirtschaftlichen Kosten von Wärme- und Strombereitstellung. Denn diese Intransparenz und der regelmäßige geistige Kurzschluss von Politikern, dann mal eben schnell den Bau eines Kraftwerks vom Bund zu verlangen, verbilligen den finanziellen Aufwand für die Energiebereitstellung nicht. Sie verlagern nur den Kostenträger von den Nutzern auf die Allgemeinheit. Ein GuD rechnet sich wie jede andere Anlage auch: Kaufpreis/ komplette Investition mit Zuschüssen umgerechnet in Abschreibung oder Finanzierungsrate plus Zinsen  oder Leasingrate und am Ende plus Betriebskosten. Warum das für Finanzinvestoren und Großkonzerne nicht gelten soll, ist nicht einzusehen. Welchen Grund gibt es, einer Kapitalgesellschaft ein von der Allgemeinheit finanziertes Produkt nach 10 Jahren zum Abschreibungspreis von nominell 1,00 Euro zu verkaufen und den Betrieb samt den daraus entstehenden Erträgen steuerlich auch noch zu begünstigen? Sind wirklich alle damit gestützten Arbeitsplätze es wert, erhalten zu werden?

Die gängige Methode, Subventionen, Zuschüsse und Beihilfen unter den Teppich zu kehren (stranded Assets) ist nicht mehr hinnehmbar. Leider arbeiten die bisherigen Parteien unverdrossen immer weiter nach diesem Prinzip. Jeder Handwerker oder Dienstleister, der solche Schönfärberei betreibt oder so schlampige Arbeit abliefert, verliert seine Kunden und keine Bank würde einen Privatmann auf dieser Basis finanzieren. Nur die bestehende Politikerkaste kann es sich offenbar leisten, jeden denkbaren Fehler zu begehen und auch zu wiederholen.

RB: Früher oder später gehen die fossilen Brennstoffe zu Ende. Ob in der nächsten oder übernächsten Generation weiß keiner so genau.

TB: Das stimmt so leider nicht ganz. Es gibt noch jede Menge fossiler Brennstoffe. Das Thema ist: Wie kann man die Stoffe möglichst billig aus der Erde holen. In den USA üblich sind dafür Aktiengesellschaften, deren Anleger dann ggf. halt kein Geld verdienen. In China verschuldet sich der Staat dafür und hier in Europa ist es gängige Methode, die Risiken und Kosten dafür dem Steuerzahler aufs Auge zu drücken. So wird Kohlestrom bei uns mit 8 Cent /kWh gefördert, denn sonst wäre er nicht konkurrenzfähig bzw. wäre es nicht möglich, Strom für 2,8 Cent an die energieintensive Industrie zu liefern. An dieser Stelle läuft ein intensiver Wettbewerb um Standorte in Europa. Der aktuell komplett auf dem Rücken der KMU und Endverbraucher ausgetragen wird. Ohne hohe Exportüberschüsse könnten wir uns unser Subventionssystem gar nicht leisten.

Gebundener Kohlenstoff zur Energieversorgung reicht bei dem jetzigen Verbrennungstempo noch locker 1.000 Jahre. Dann würden allerdings gut 0,5 % des atmosphärischen Sauerstoffs in Kohlendioxid und Wasser gebunden werden. Das wäre für die dann Lebenden schwierig. Abgesehen von den Folgen für das Klima, über die man trefflich streiten kann.

Doch das ist nicht der primäre Fokus: Allein bei der wirtschaftlichen Betrachtung unter Einrechnung aller externen Kosten wird klar, dass die Bewertung von Strom und z.T. auch Wärme unter den aktuellen Bedingungen vollkommen verzerrt wird. Die derzeit bezahlten Preise sind irreal und deutlich zu niedrig. Wir leben aktuell massiv von der Substanz.

RB: Energiewende vor Ort Anregungen und Möglichkeiten

RB: Zur Energiewende möchte ich Möglichkeiten für Grafenrheinfeld unterbreiten.
Nach dem Motto: „Umbau statt Rückbau“
Der Standort des Kraftwerks Grafenrheinfeld ist so zentral gewählt, dass es an einem günstigen Netzknoten liegt.

TB: Für eine künftige Stromversorgung ist Dezentralität die nachhaltigste Form. Standorte sind von daher sekundär.

RB: Was bei der Energiewende noch fehlt ist die Speicherkapazität und das Ausgleichen von Spitzenleistungen.

TB: Das ist richtig. Beides. Es fehlen Speicher, Speicher und Speicher. Das Ausgleichen von Spitzen ist auch ein Thema. Es gibt eine Reihe recht einfacher technischer Möglichkeiten. Ein großer Teil der Netzschwankungen ist aber vor allem dem Handelssystem geschuldet. Die synchrone Zuschaltung und Wegnahme von Leistung zu jeder Stunde verursacht die Probleme im Hoch- und Höchstspannungnetz. Entgegen den Unkenrufen und dem Geschrei einiger Lautsprecher aus Politik und Industrie. Diese wollen in erster Linie ihre Geschäftsmodelle schützen. Die regenerativen und generativen Erzeuger speisen überwiegend in das Verteilnetz ein. Ein paar Prozent gehen in das Mittelspannungsnetz.

RB: Hier würde sich am KKW Standort Grafenrheinfeld eine Kombination mit einem Gaskraftwerk und einer power to gas Anlage (Methanisierungsanlage) anbieten.

TB: Theoretisch „Ja“. Die aber Frage ist, wie viel generative Stromerzeuger es in der Gegend gibt. Regenerativ erzeugten Strom aus Biomasse in Gas umzuwandeln macht keinen Sinn,auch wennich das bereits von CSU-Mitgliedern gehört habe. Der Strom für die Methanisierung muss ja irgendwo  herkommen.

RB: Power to Gas Anlagen wurden bereits mit Fraunhofer IWES und Solar Fuel errichtet. Solar Fuel begann mit einer 250 kW Methanisierungsanlage in der Nähe von Stuttgart. Zur Zeit ist eine power to gas Anlage von Audi in Werlte mit 6,3 MW im Bau; bei EON edis AG 15517 Fürstenwalde/ Spree mit ca. 2 MW speist bereits mit H2 ins Gasnetz ein.

TB: Das ist richtig. Diese Pilotprojekte sind bekannt und hervorragende Trendsetter. Aber um den Bedarf am Beispiel Grafenrheinfeld deutlich zu machen (wir nehmen an, das zu versorgende Verteilnetz sei ganz Unterfranken):

– Das AKW hat 1.350 MW Leistung. Die stehen das ganze Jahr zur Verfügung: 8.760 Stunden.

– Windkraft in Unterfranken dürfte im Schnitt an die 1.300 Stunden mit Volllast zur Verfügung stehen

– Bei PV sind es etwa 900 Stunden.

– Zusammen können wir – ohne die Gleichzeitigkeiten beider Erzeuger zu berücksichtigen – also von ca. 2.200 Stunden ausgehen. Zur Verfügung stehen müssten aber vier Mal so viele Produktionsstunden. Das bedeutet mindestens die vierfache Kapazität an Windkraft und PV zusammengerechnet. Hinzuzurechnen sind die Speicher- und Konversionsverluste mit ca. 50 %. Also eine weitere Verdoppelung der Kapazität. Verteilen wir die auf Wind und PV nahe dem umgekehrten Mengenverhältnis, so hätten wir also etwa 1.000 MW PV mal 4 mal 2 = 16.000 MW PV zu installieren, was in etwa 2,7 km² ohne Zufahrts- und Erschließungswege entspricht. Dazu kämen 3.200 MW Windleistung. Die derzeit gängigen Windräder haben 5 MW. Also müssten in Unterfranken allein dazu noch 640 Windräder aufgestellt werden.

Dann würde ein Schuh draus. Die nutzbare kWh Strom kostet dann allerdings immer noch ein Vielfaches dessen, was aktuell der Endverbraucher zahlt: Ein grobes Beispiel mit ein paar realen Nutzungsgraden Strom aus PV in Unterfranken ca. 11 ct./kWh geteilt durch 0,75 Methanisierungsverluste geteilt durch 0,3 Verbrennungsverluste bei der Rückverstromung in einem BHKW: 49 Cent pro kWh ohne Investitionsabschreibungen und Zinsen der Anlage. Dafür kann ich jetzt schon eine Menge Redox-Flow-Batterien bauen, die ca. 70 Jahre arbeiten.

Deshalb ist eine dezentrale Erzeugung und Speicherung durch viele private Investoren besser. Da hierbei die Power-to-Gas-Stufe entfällt.

RB: Die CO 2 Abgabe des Gaskraftwerkes wird zwischengespeichert und zur Methanisierung wieder verwendet.

TB: Die vorangegangene Schilderung zeigt, dass die Power-to-Gas Methode Zukunft hat, aber vor einer großtechnischen Anwendung erst eine Kostendegression erfolgen muss. So eine zentrale Großanlage wäre in etwa 20 Jahren ein Thema. Ich sehe allerdings den Bedarf nicht, denn bis dahin ist das Problem anderweitig aufgelöst. Die Treiber der Entwicklung sind die vielen kleinen privaten Initiativen. Und das ist es, was die aktuellen Kapriolen beim „Erzeengel“ Gabriel auslöst. Er bekommt politischen Druck von den Kohleleuten, den Energieversorgern, der Großindustrie, den energieintensiven und den institutionellen Anlegern. Wie leider erst am Montag im Gespräch mit Staatssekretär Franz Pschierer vom bayerischen Wirtschaftministerium feststellbar, ist die Politik an der Stelle gehörig unter Druck. Und zu einem gewissen Grad wird seitens einiger Konzerne offene Erpressung versucht. Die derzeit mit Mandaten betreuten Politiker haben das Instrumentarium zur Verhandlung mit den Industriekonzernen nicht ausreichend zur Verfügung.

Wenn das Management eines Papierproduzenten in Augsburg schildert, dass er bei der Weiterentwicklung des Standorts mit einem Standort seines Konzerns in Frankreich in Konkurrenz steht, der günstigere Industriestrompreis bieten könne, dann wären unsere Volksvertreter gut beraten, nicht nur die aktuellen Strompreise in Frankreich zu kennen, sondern auch deren Zukunftsfähigkeit. Der KKW-Park in Frankreich ist knapp über 26 Jahre alt. Frankreich kann es sich also nur noch maximal 13 Jahre leisten, Strom ohne Refinanzierung der Investitionen zu verschenken. Das nützt uns zwar aktuell wenig, aber das Verständnis für diese Zusammenhänge ist essentielle Grundlage für die Zukunftsfähigkeit der eigenen Standorte. Wenn dabei ein paar größere Industrien auf der Strecke bleiben,  nur weil sie sich weigern, zukunftsdienlich ihre Standorte zu entwickeln, gewinnen wir mittelfristig mehr, als wir verlieren.

Die Lösung kann an der Stelle nur heißen, statt Subventionen in degenerative Stromerzeugung zu stecken, um die Strompreise künstlich niedrig zu halten, lieber gesetzlichen Druck und staatliche Investitionen in Energieeffizienz.

RB: Das erzeugte und noch nicht benötigte Gas sollte über die Gasleitung (Direktanschluss) mit dem Gasnetz in bereits vorhandene Gaslager gespeichert werden.

TB: Eben das ist mit vielen dezentralen Einzelanlagen besser und schneller realisierbar. Der Pfad sollte dabei dem Beispiel der PV folgen. Kleine Methanisierungsanlagen hoch fördern und dann die Fördersätze mit der Zeit abbauen. Allerdings sollte man genauer hinsehen und die Bildung von Reichtum durch Umlagen verhindern. Das Problem des EEG ist nicht die geförderte Technologie, das Problem sind die zu langsam angepassten Fördersätze und der zu großzügige Umgang mit Renditeerwartungen. Es wurden bequeme Einkommen für Leute finanziert, die eigentlich nichts hatten außer Grundbesitz. Und auch keine Leistungen an die Gesellschaft einbringen. Keinen Mehrwert schaffen. Wer mehr haben will, sollte aber auch mehr einbringen.

RB: Da das KKG Ende 2015 vom Netz gehen soll, ist es jetzt an der Zeit sich mit Lösungsmöglichkeiten auseinanderzusetzen. Hier macht es Sinn die Politiker, EON, ÜZ, Fachfirmen und Institute rechtzeitig einzubinden.

TB: Im Prinzip stimme ich Ihnen da zu. Allein die Einbindung der Genannten macht mich allerdings skeptisch, was die Erfolgschancen angeht. Wir sind Piraten. Von daher sehen wir die einzige Chance in einem streng moderierten Prozess in absoluter Transparenz, bei dem am Ende die Bürger mitentscheiden können müssen.

Von dem abgesehen, warum sollte ein Kalb den Metzger fragen, wie seine persönlich beste Lebensplanung aussehen könnte? Man darf die Genannten Eliten bei dieser Sache nicht mehr allein lassen. Nie wieder. Es ist eben nicht deren Aufgabe, solche Dinge zu entscheiden, sondern die Umsetzung so effizient wie möglich zu gestalten. Die Entscheidung trägt immer der, der die Verantwortung hat. Die Verantwortung tragen heißt in der Realität, die Rechnung bezahlen. Und das sind die, die durch Ihre Arbeit das Sozialprodukt erwirtschaften: Alle Bürger, den die bürgen für das Ganze.

RB: Mit der vorhandenen Infrastruktur wäre ein weiterer Meilenstein der Energiespeicherung von z.B. einer 100 MW Methanisierungsanlage (eventuell im Bausteinsystem erweiterbar auf 1000 MW, je nach Bedarf und Wirtschaftlichkeit) denkbar.

TB: Wie beschrieben: 100 MW sind zwar ein Meilenstein und ein guter Beitrag – da haben Sie Recht – allein wo und wie soll der zur Methanisierung notwendige Strom sinnvoll erzeugt werden?
Speichert man den Strom aus den EE-Anlagen direkt, halbiert sich der Bedarf an PV-Anlagen und Windrädern, der zur Fütterung der Methanisierungsanlagen notwendig wäre. Verzichtet manauf Rückverstromung des erzeugten Gases und verbrennt das Gas wieder, kann man locker noch mal die Hälfte der EE-Anlagen einsparen. Die müssen ja auch irgendwo hin.

RB: Bereits vorhandene Infrastruktur: Netzanbindung, Flächen, Gebäude, Büros, Schulungsräume, Straßen und Wege, Personal, Kantine, Info, Parkplätze, Destilliertes Wasser (Deionatanlage), Wasserlabor, Werkstätten elektrisch und mechanisch, Trafos, Wechselrichter, Batterien, Notstromdiesel, Maschinenhaus, Hilfskesselhaus, Feuerwehr, Lagerkapazitäten, Wasser, Tel, DSL, Öl, Gas, usw.

TB: Richtig. Allerdings ist ein großer Teil technisch veraltet, ein anderer Teil zu den neuen Technologien inkompatibel. Die Aufgabe dieser Strukturen wäre also wahrscheinlich kein sehr großer Verlust.

RB: Eine Finanzierung wäre vorstellbar mit:
-Einsparungen in den Rückbaukosten (stattdessen Umbaukosten,

TB: Wie angedeutet: Der Effekt wird vernachlässigbar sein. Um Neubauten und Neuinstallationen kommen wir nicht herum. Die Investitionen sind dezentral ziemlich sicher nachhaltiger eingesetzt.

RB: Wer würde sich finanziell beteiligen, unter welchen Bedingungen wäre ÜZ, EON, Kommunen usw. bereit mitzumachen? Dies wird ein wesentlicher Punkt bei der weiteren Durchführung dieser Maßnahme sein!?

TB: Die ersten beiden sicher nur unter ähnlichen Bedingungen wie die Netzausbauer: Staatlich garantierte Renditen auf Eigenkapital, Monopolstellung, Betriebs- und Nutzungsgarantien, Darlehensbürgschaften etc.

Da es eine Bürgerentscheidung sein sollte, sollte es auch in Genossenschaftsform oder per Kommunalobligationen mit gesicherter Verzinsung auf moderatem Niveau umgesetzt werden.

RB:Zuschüsse und Förderungen von EU (? 30 % Zuschuss bei den Speicherkosten?), Bund, Staat usw…

TB: …kosten am Ende auch nur Steuergeld, bzw. bedeutend mittlerweile aber zunehmend Verzicht der weniger Privilegierten (Schleichende Verarmung). Wenn, dann transparent und in die Gesamtrechnung einbezogen. Oder sollte etwa die EZB einfach noch mehr Geld dafür drucken?

RB:Beteiligung von Firmen, Bürgern, Kommunen, andere Stromversorgern, freien Kapitalmarkt usw.,

TB: Da stimme ich ihnen zu. Aber nicht als „Bedingungsloses Grundeinkommen“ für Konzerne.

RB:Einsparungen bei Energie Importen sowie bei den Netz und Netzregelkosten,

TB: Richtig. Zumindest auf Dauer.

RB: -Emissions Zertifikats Zahlungen für CO 2 können gegengerechnet werden,

TB: Das ist eine Frage für auf Emissionen und Primärenergiefaktoren basierte Hebesätze auf die Energiesteuer.

RB: -Einnahmen aus Gaslagerkapazitäten und Energieeinnahmen.

TB: Spekulativ. Das würde sich mit Voranschreiten eines solchen Projekts zeigen. Aber da das Geld immer in Kreisläufen zirkuliert, kommt die Finanzierung am Ende aus der Wirtschaftsleistung der Region. Die Frage ist, wem man die Möglichkeiten lässt, sich wie stark daran zu bereichern. Diese Frage ist am Ende sowieso immer die zentrale Frage der Gesellschaft, die leider viel zu viele mit dem Schlagwort „soziale Gerechtigkeit“ zu lösen versuchen.

RB: Am Erstgespräch zur Sondierung sollten eventuell folgende Personen teilnehmen:  Erwartungshaltung bei Gewinnsparten?
EON, KKG Herr Scheuring, Herr Klinger

Politik: BMWi Sachverständige, Frau Dr. Weisgerber ( Nachfolger von Herrn Glos, frühere EU Abgeordnete, usw.), Herr. Eck (Bayerischer Staatssekretär), Herr Dr. Otto Hünnerkopf MdL Umwelt, Energie Bayern, ÜZ Aufsichtsratsvorsitzender, Herr Fell, Landrat Herr Töpper usw.
Fachfirmen (z. B. Solar Fuel, Siemens, usw.)
Erfahrungsträger aus bereits laufenden Projekten (z. B. Fraunhofer Institut, FH Schweinfurt Prof. Paulus, Prof. Wiener, usw.) EON, KKG Herr Scheuring, Herr Klinger

TB: Das alles sind Leute, die stark involviert sind, daher keine neutrale Analysegrundlage haben und daher wiederum einem transparenten und moderierten Prozess unterworfen werden müssten. Gerade der Rückgriff auf Großkonzerne wie Siemens führt zu einer weiteren Runde der garantierten Umlenkung enormer Renditen in eben die Strukturen, die uns das Problem erst eingebrockt haben. Keiner aus diesen Reihen darf das Gespräch leiten. Auch kein ehemalig involvierter wie z. B. ein Heiner Geißler. Alle Bürger müssen vollumfänglichen, transparenten Zugang zu allen Informationen bekommen, Fragen stellen können und am Ende entscheiden. Die sollen Bürger sollten regionla aus in einem offenen Bewerbeverfahren eine neutrale Person auswählen, die das Ganze leitet.

RB: Fast alle der genannten Personen und Ansprechpartner und weitere (Firmen usw.) haben bereits Kenntnis hiervon und würden mitarbeiten und unterstützen. Es fehlen allerdings noch die Regierung von Unterfranken und die in Unterfranken existierenden Planungsverbände.

TB: Interessant. Wir wären als Piraten jederzeit bereit, uns federführend einzubringen. Und wir haben den stärksten Grad an Unabhängigkeit aufzuweisen.

RB: Hierzu sollten Termine und Tagesordnungspunkte festgelegt werden.

TB: Wir können uns gern in Würzburg treffen.

RB: Themen: Durchführungsmöglichkeiten, Größenordnung, Aufgabenverteilung zur weiteren Planungen.
Die Planung hierfür sollte bereits jetzt beginnen, um dem Fachpersonal des KKW Perspektiven aufzeigen zu können und hiermit Arbeitsplätze vor Ort zu erhalten.

TB: Da stimme ich Ihnen zu.

RB: Sollten wir es nicht vermeiden mit Rückbau Geld und Infrastruktur zu vernichten?

TB: Wie bereits gesagt: Eine Analyse wird mit an Sicherheit grenzender Wahrscheinlicheit über die an der Stelle möglichen Einsparungen Nüchternheit und evtl. Enttäuschungen bringen.

RB: Weitere Möglichkeiten Wasserstoff, Batterietechnik zur Kurzzeitspeicherung, Wärmeverwendung könnten hier erprobt werden. usw.

TB: Das ist richtig. Es fehlt aber an transparenten und verwendbaren Daten.

RB: Hierdurch könnte überschussige Energie aus alternativen Energien genutzt werden.

TB: Ohne das wäre es sowieso ein unsinniges Projekt.

RB: Mit der technischen Erzeugung von Energie durch Photovoltaik und Wind die sonst abgeregelt werden müssten, wäre auch mit dem Zwischenschritt der Methanisierung, ein vielfaches weniger an Flächenbedarf als bei Biogasanlagen nötig.

TB: Wie gezeigt, wird die Methanisierung von überschüssigem Strom aus RES den Bedarf an RES eher vergrößern als verringern. Zudem sind Windflächen und PV-Flächen nicht verloren. Hierfür gibt es diverse Nutzungskonzepte. Eine Nutzung nur der Spitzen für die Methanisierung allerdings würde den Bedarf noch deutlicher in die Höhe treiben.

RB: Die Wärme die durch Wirkungsgradverluste des Gaskraftwerks und der Methanisierungsanlage entsteht könnte zu Heizzwecken usw. verwendet werden.

TB: Sind Ihnen die Kosten für Fernwärmeleitungen bekannt? In der Bilanz rechnet sich so etwas nur mit massiven Subventionen. Dann kaufen Sie Fernwärme für 11 ct./kWh wie z. B. in München und refinanzieren zusätzlich den Bau der hochisolierten Leitungen über Steuergelder. Das geht deutlich nachhaltiger. Aber grundsätzlich unterstütze ich Ihre Intention, eine hohe Anlageneffizienz zu erreichen.

RB: Bei unserer Umwelt käme es zu Verbesserungen, die eventuell mit Emissionsrechte Zahlungen vergütet werden kann.

TB: Das Konzept weist allerdings in eine richtige Richtung.

RB: Für Spitzenlastgaskraftwerke ist eine kostendeckente Vergütungsregelung durch die Politik notwendig.

TB: Widerspruch, energisch. Der Bau von Spitzenlastgaskraftwerken ist genau der falsche Weg. Wir binden uns damit zumindest vorerst wieder an eine fossile Ressource. Noch dazu an eine, deren Kosten in kurzer Zeit extrem steigen werden: Die Vorstellung, dass Fracking billiges Gas bringt ist eine Illusion, die David Copperfield nicht besser hätte verkaufen können. RES-Gas ist (noch) zu teuer. Eine KWK-Anlage als Spitzenlastkraftwerk ist ebenso der falsche Weg. Für diese Dinge gibt es bereits ausreichend Batterietechnik. Und auch die sollte durch Ausweitung der Stückzahlen endlich in die Kostendegression geführt werden. Irgendwelche Verbrennungsanlagen für degenerative Ressourcen sind hier der veraltete und falsche Weg.

RB: Durch Forschung und Studien in diesen Bereichen könnten in Schweinfurt die Fachrichtungen der Hochschulen erweitert werden.

TB: Ein sinnvoller Nebeneffekt.

RB: Die Frage die sich für mich immer wieder stellt: Was kostet die Energiewende wirklich? Jährlich werden ca. 23 Milliarden an EEG Umlage gezahlt; darin enthalten über 4 Milliarden Umsatzsteuer einige Milliarden weniger an energie Rohstoff Einkaufkosten Emissions Abgabe Verringerung bei 4 € bzw. 25 € gewünschte Kosten je Tonne CO2 Einnahmen durch zusätzliche Arbeitsplätze Stromvergünstigung durch die erneuerbaren an der Strombörse ca 3 – 4 Cent je kWh Einsparungen durch günstigeres Regelverhalten bei Power to Gas Nutzung der abgeregelten Energie Wind und Photovoltaik, besonders im Sommer Tatsächliche Kosten ??? oder ein Gewinn ???

TB: Halten Sie mal diese Zahlen dagegen:

– 100 MRD Euro für Importe degenerativer Energieträger jährlich

– 28 MRD Euro für direkte und indirekte Subventionen für Kohle, Erdgas, Erdöl und Uran

– nicht bezifferbare Kosten für Rückbau und Lagerung der radioaktiven Reststoffe

RB: Wäre hier ein Untersuchungsausschuss sinnvoll? (siehe Anlage)

TB: Nur falls der wirkliche Ergebnisse und prüfbaren Nutzen hätte. Das bezweifle ich, solange sich die Verantwortlichen dabei mit sich selbst beschäftigen und über sich selbst Befinden dürfen.

RB: Früher oder später wird man an der Power to Gas Technologie nicht vorbeikommen, darüber sind sich viele Fachleute einig, warum dann nicht schon jetzt ein klares Ziel das nachhaltig, unabhängig und gut ist, nicht schon jetzt verfolgen.

TB: Die Wahrscheinlichkeit, dass diese Technologie auf breiter Front zum Einsatz kommt, ist recht hoch. Unabhängig von den Meinungen von Fachleuten, sondern mehr wegen der Vorliebe der allermeisten Ingenieure in D für Verbrennungstechnologien. Der Germane kommt vom Lagerfeuer einfach nicht los. Strom versteht der Deutsche im allgemeinen intuitiv nicht. Das ist schlicht Realität. Vor allem, könnte es an Ressourcen für Akkus und Batterien einige zeit lang mangeln. Die Zeit indes ist dafür noch nicht reif. Ein Pilotprojekt mit 1 MW in Grafenrheinfeld jedoch wäre ein Anfang. Weitere Piloten sollten wenn, dann dezentral aufgebaut werden. 100 MW sind aber deutlich zu groß. Lieber viele 1 MW Anlagen dezentral verteilt. Am Ende aber sage ich einen Anteil von 20% am gesamten Energienutzung für synthetisches Methan und H2 aus Elektrolyse voraus. Das werde ich aber wahrscheinlich nicht mehr erleben.

RB: Ich denke bei den vielen Subventionen Steinkohle, Erneuerbaren, Kernenergie Endlagerung usw. hätte hier die Power to Gas Technologie einen berechtigten Platz die jetzt schon im größeren Stil zu entwickeln.

TB: Das ist richtig, für mich aber nicht wünschenswert. Ich bevorzuge die negative Subventionierung durch Bepreisung der negativen Folgen. Zudem bedingen diese Subventionen die Wettbewerbsfähigkeit einiger großer Unternehmen auf dem Weltmarkt. Das bedeutet: Der Schlüssel zu dem Problem liegt im  gemeinsamen Willen der meisten Staaten, nicht in der EU und schon gar nich thier in D.

Wir subventionieren derzeit, wie die meisten anderen Industrieländer auch, den Strompreis für Unternehmen, die bei realen Preisen eigentlich keine Chance hätten. Da das aber alle Industrieländer so handhaben, kann man damit aber nur international Schluss machen. Diese Einsicht fehlt aber noch. Das größte Hindernis für die Energiewende ist ein internationales Übereinkommen, sämtliche Subventionen, Beihilfen und sonstige Leistungen für degenerative Strom- und Wärmeerzeugung einzustellen und auch keine Ersatzleistungen in anderer Form zuzulassen.

Vielen Dank für den interessanten Dialog,

Ihr Thomas Blechschmidt

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt