Schlagwort-Archive: Stromautobahnen

Neues von alten Freunden – Plattform Energie bei den Piraten

Jau, noch gibt es sie, die PIRATEN. Bei den alten Freunden ist noch immer Platz für sachbezogene Arbeit.
Als Spin-Off der AG Energiepoltik hat sich ein kleines aber gut informiertes Häuflein gebildet, das sich als Plattform_Energie aktuell fachlich und sachlich mit dem Thema Stromtrassen, Stromautobahnen, Netzausbau, eingehend befasst. Da das Ganze weitgehend unvoreingenommen und ideologiefrei sowie stark sachbezogen abläuft, mache ich mit. Hier ein Bericht zu einer Veranstaltung der Bundesnetzagentur (BNetzA) aus Leipzig:

Ein nur mit Stühlen bestückter Tagungsraum der Kongresshalle am Zoo bildete den örtlichen Rahmen des Leipziger Informationstages der BNetzA zum Netzausbauplan 2030. Anwesend waren neben Vertretern der BNetzA und des Übertragungsnetzbetreibers 50 Hertz etwa 30 Gäste; vornehmlich Mitarbeiter kommunaler Behörden und Vertreter von Firmen, die wirtschaftliche Interessen am Netzausbau haben. Darüber hinaus traten zwei Mitglieder der AG Energiepolitik der Piratenpartei Deutschlands als interessierte Bürger in Erscheinung. Laut eines von der BNetzA veröffentlichten Dokuments [2] ist die Mitwirkung der breiten Öffentlichkeit am Konsultationsprozess über neue Stromtrassen schließlich erwünscht. Nicht zuletzt wegen dieser beiden Herren entwickelte sich eine rege Diskussion, bei der die BNetzA – leider einmal mehr – etliche Antworten schuldig blieb.

Dipl. Ing.(FH) Jörg Diettrich dazu: „Die Vertreter der Bundesnetzagentur sind von ihrer Herangehensweise in der Planung des Stromnetzes nach wie vor fest überzeugt. Ich bin es nach wie vor nicht, zumal keiner der konkret von mir benannten Widersprüche aufgeklärt werden konnte. Besonders befremdlich war für mich, dass man mir mangelnde Sachkenntnis unterstellte, gleichzeitig aber die Herausgabe der für genauere Plausibilitätsrechnungen notwendigen Daten verweigerte.“

Jörg Dietrich hat als Mitglied der AG Energiepolitik auf der Basis von Daten, die ihm die BNetzA selbst zur Verfügung gestellt hat, eigene Netzberechnungen angestellt, die die Thesen der BNetzA vom unbedingt notwendigen Bau neuer Trassen widerlegen.

„Die gesamte Planung und Umsetzung neuer Stromtrassenprojekte liegt vornehmlich in den Händen der vier großen Übertragungsnetzbetreiber“, ergänzt Ingolf Müller. „Dieser Fakt wird von der BNetzA nicht wirklich bestritten und kann auf einer der BNetzA-Seiten [3] direkt nachvollzogen werden. Die Bundesnetzagentur gibt sich bürgernah, wenn man aber als Bürger die Frage stellt, ob die neuen Trassen tatsächlich notwendig sind und dabei konkret auf die enormen Strom-Exportüberschüsse Deutschlands hinweist, wird man mit diffusen Antworten abgespeist. Interessant fand ich einzig die in einem Vortrag enthaltene Information, dass die BNetzA für ihre Netzberechnungen die gleiche Software benutzt, wie die Übertragungsnetzbetreiber. Hinter diese Feststellung könnte man ein dickes, systematisches oder strukturelles Fragezeichen setzen. Man könnte aber auch zu ganz anderen Schlussfolgerungen gelangen.“

Die BNetzA sieht ihre Aufgabe ausschließlich darin, den Ausbau der Übertragungsnetze entsprechend der gesetzlichen Bestimmungen voran zu treiben.

Eine sehr interessante Frage wurde von einer Vertreterin der Stadt Eisenach gestellt. Sie wollte wissen, inwieweit die Behörde Einfluss auf den Ausbau dezentraler Erzeugerstrukturen bzw. Stromspeichern sowie die Ansiedlung von Gewerben mit hohem Stromverbrauch in Gebieten mit Stromüberschuss nimmt.

Diese Frage beantwortete die BNetzA einem klaren „Dafür sind wir nicht zuständig“.

Das passt nicht ganz zum Statement der BNetzA auf die erste Frage aus unserem Offenen Brief, welchen Stellenwert die Versorgung der Bevölkerung mit Elektroenergie im Sinne der öffentlichen Daseinsvorsorge hat:

„Unter dem Aspekt der öffentlichen Daseinsvorsorge misst die Bundesnetzagentur der Elektrizitätsversorgung sehr große Bedeutung zu. Deswegen muss man sich dem Thema mit fachlicher Expertise widmen.“

Zur fachlichen Expertise gehört unserer Meinung nach die ganzheitliche Betrachtung der gesamten Energiewirtschaft; hier ganz konkret der bereits vorhandenen Möglichkeiten zur Vermeidung des sowohl ökonomisch als auch ökologisch fragwürdigen Baus neuer HGÜ-Leitungen. Vielleicht vermutet die BNetzA aber die „fachliche Expertise“ gar nicht bei sich selbst. Dem würden Diettrich und Müller jedoch widersprechen. Sie hatten durchaus den Eindruck, dass die Vertreter der Behörde auch im Detail wissen, wovon sie reden.

„Aufgrund der vielen ungeklärten Fragen werden wir den Konsultationsprozess mit der BNetzA unter Einbeziehung von Bürgerinitiativen, mit denen wir in Kontakt stehen, intensivieren“, verspricht Jörg Diettrich.

Das Orangebuch der Energiepiraten – meine Sicht – Teil 7

Das Orangebuch der Energiepiraten – meine Sicht – Teil 7

6 Globaler Ausblick

– „Budgetansatz“ aus der Klimapolitik

– Wenn jeder auf der Welt so viel Energie verbraucht wie wir Deutschen in Zukunft, wird nicht mehr Energie benötigt, als heute erzeugt wird!!

– Genügend Rohstoffe für eine weltweite nachhaltige Energieerzeugung vorhanden?!

– Umbau des Weltwirtschaftssystems zu einem nachhaltigen kostet 2-3% des Weltbruttosozialprodukts, Förderung und indirekte Kosten der fossilen Stromerzeugung kosten 6,5 % des Weltbruttosozialprodukts- Studie des IWF 2015 (Vortrag D. Messner, DIE)

Energiesubventionen am Pranger:
http://www.faz.net/aktuell/wirtschaft/energiepolitik/subventionen-fuer-energie-hoeher-als-ausgaben-fuer-gesundheit-13601362.html
Die Länder der Welt subventionieren den Einsatz von Energie in diesem Jahr mit 5,3 Billionen Dollar. Das behauptet zumindest der Internationale Währungsfonds (IWF) in Washington. Das sei ein schockierendes Ergebnis, schreiben die Autoren dieser Studie. Die Summe entspricht 6,5 Prozent des globalen Bruttosozialprodukts und übersteigt damit die globalen Ausgaben für Gesundheit.

Eine marktwirtschaftlich adäquate Behandlung der Energieversorgung ist weltweit nach wie vor weit von der Realität entfernt.

Nahezu überall ist es nach wie vor Usus, die Bereitstellung von Energieträgern entweder massiv zu subventionieren oder – und das geschieht im Übermaß – von den Kosten zur Wiederinstandsetzung und zum Erhalt der Lebensgrundlagen durch nachhaltige Fehlbewirtschaftung freizustellen.

Jede Hausfrau, jeder kleine Kaufmann und jeder Landwirt weiss, dass er seine Grundlagen erhalten muss, seine Ressourcen schonen muss und seine Leistungskraft nicht über deren Kapazität hinaus strapazieren darf.

Eigentlich will jeder politisch Konservative Mensch – und die stellen weitaus die Mehrheit – seine Gegenwart sichern, seiner Familie einen vor allem sicheren Platz zum Leben bieten und seinen Nachkommen auch genau diese weitergeben. Trotzdem setzen gerade konservative Politiker weltweit nirgends eine diese Grundbedürfnisse gewährleistende Politik um.

Zumindest den Sonntags- und Parteitagsreden nach will so ziemlich jeder linke Politiker – egal ob Sozialdemokrat, Sozialist, Grüner oder Linker, Syriza oder Podemos, genau das auch. Der politische „Wettbewerb“ bezieht sich lediglich auf die Methode und die Ausgestaltung,

Von den angeblich Liberalen Politkern und Parteien erhält man dazu keine Haltung, was aber in erster Linie daran liegt, dass es keine liberalen Parteien mehr gibt und niemand mehr den politischen Liberalismus versteht und würdigt.

Betrachten wir die Themen Energieversorgung, volkswirtschaftlich zukunftsfähige Bewirtschaftung und Rentabilität und faire Teilhabe zusammen, können wir zwar weiterhin zulassen oder gar selbst dafür sorgen, alle möglichen Verknüpfungen mit Nebenaspekten unter verschiedenen ideologischen Sichtweisen zu einem kaum durchschaubaren Gewirr vermengen und den normalen Bürger, der schlicht weder Zeit noch Ressourcen hat, sich mit derart komplexen Zusammenhängen zu befassen, immer weiter davon wegtreiben, sich damit zu beschäftigen.

Doch eine zentrale Erkenntnis lässt sich rational. Objektiv und nüchtern über alle Meinungsverschiedenheiten hinweg feststellen:

Energie wird viel zu billig bewertet, gehandelt und in Ihrer Bedeutung zu geringgeschätzt.

Eine der grundlegenden Fehlsteuerungen im Denken liegt in der – auch auf anderen Politikfeldern – stets wiederkehrenden These, dass Strom, Benzin, Öl, Gas usw. zu teuer sind. Eines der dominantesten Kantinen- Büro- und Stammtischthemen ist immer wieder der Anstieg von Spritpreisen. Bei Heizöl und Strom ist das übliche Gejammer zwar nicht so groß – und die geringe Zahl an tatsächlich den Lieferanten wechselnden Verbraucher deutet eher darauf hin, dass diese Preise eigentlich belanglos sind – doch der Punkt ist, dass kein einziger Politiker den Mut hat, die weit verbreiteten Fehleinschätzungen, den vereinfachenden Irrglauben die Zusammenhänge klar, transparent und nachdrücklich öffentlich zu kommunizieren. Dabei wäre gerade das die Aufgabe eines wirklich fähigen Wirtschaftsministers.

Das Phänomen besteht weltweit. In Argentinien zum Beispiel wurde ein neuer Präsident gewählt, der die Subventionen für Strom, Gas und öffentlichen Verkehr massiv gekürzt hat, um Spielräume für sein Budget zu schaffen und der in der Folge mit massiven öffentlichen Protesten konfrontiert ist, da die Preise bis zu 600% gestiegen sind.

Das argentinische „Marktmodell“ für Strom ist zwar ein anderes als hier, aber einzelne Bestandteile zum Beispiel des Strompreises lassen sich sehr gut nebeneinanderstellen. Die wirtschaftlichen Grundlagen sind wie in Europa oder der BRD, denn für die primären Energieträger gelten Weltmarktpreise. Die Einkaufsbedingungen sind also gleich.

Nun kostet die KWh Strom in Argentinien zwischen 2 und 4 Eurocent – nach der Preisanpassung. Die Produktion jedoch kostet dort wie hier zwischen 1 ct/kWh für Wasserkraft und brutalen 15 – 25 ct/kWh für Atomkraft. Obwohl die Reaktoren alt sind. Warum? Weil sie von einem deutschen Unternehmen einst geliefert und mit gewaltigen, sehr teuren Schulden refinanziert werden. Auch dort werden keine Folgekosten eingepreist. Schlimmer noch: Man plant ein neues AKW und Europa lockt mit süßen Angeboten.

Wir brauchen uns nichts vormachen:
So lange kein weltweiter Konsens samt effektiver Durchsetzungsmethoden darüber besteht, dass
Energieträger und Erzeugung nicht weiter subventioniert werden dürfen
Sämtliche Folgekosten samt der Schuldentilgung für Altanlagen endlich vollständig eingepreist werden
Jedes Land ohne jeden Kompromiss den Mut aufbringt, die damit verbundenen Preiserhöhungen für jeden Energienutzer durchzusetzen und dafür nötigenfalls auf spezifische Steuereinnahmen zu verzichten
Die Handelssysteme für sämtliche Energieprodukte, Komponenten, Erzeuger und jede Art der zugehörigen Anlagentechnik fair, transparent und im Sinne der öffentlichen Daseinsvorsorge durch staatliche Garantien gesichert finanziert werden.
Solange diese strukturellen Herausforderungen nicht bewältigt werden, wird dieser Machtkampf der Partikularinteresen, kleinlichen Eifersüchteleien und Streitereien weitergehen und vor allem sich der Aspekt der Umweltfolgen genau so negativ weiterentwickeln wie bisher.
Das weitgehend undemokratische Amalgam der bisherigen Eliten, Wirtschaftsführer und etablierten Politiksysteme samt ihrer Besatzungen hat so gut wie nichts zum Positiven verändert und wird es auch nicht schaffen, da die Verzahnung mit Partikularinteressen zu eng ist und zu wenig Handlungsspielraum der Politik besteht.

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 6

5 Der Weg zum Ziel

5.1 Noch einhundert Jahre warten?

Der Ausbaupfad des EEG: So, wie die Bundesregierung es betreibt, dauert die Energiewende noch 500 Jahre oder bis kein Stück fossiler Brennstoff mehr das ist.

Auf diesem Weg sich das Petitum von Peter Altmaier während seiner Amtszeit als Bundesumweltminister erfüllen: „Die Energiewende muss und wird immer Ziel der Bundesregierung bleiben!“ (Sommer 2013 Rede vor der HWK Augsburg).

Logisch von Herrn Altmaier gedacht: Wenn etwas immer Ziel bleiben soll, darf es nie erreicht werden. Sonst wäre es ja kein Ziel mehr.

Studie der Hochschule für Technik und Wirtschaft Berlin (htw):

„Anforderungen an den Ausbau erneuerbarer Energien zum Erreichen der Pariser Klimaschutzziele unter Berücksichtigung der Sektorkopplung“ http://pvspeicher.htw-berlin.de/sektorkopplungsstudie/

5.x Sündenfall Kohle-Subventionen

5,3 Billionen Dollar Subventionen für fossile Energien:
https://www.energie-und-management.de/nachrichten/detail/oecd-bemaengelt-subventionen-111371
OECD bemängelt Subventionen:
https://www.energie-und-management.de/nachrichten/detail/oecd-bemaengelt-subventionen-111371

Subventionen in die Energiewirtschaft – Das Geld geht an die Falschen:
http://uni.de/redaktion/geld-an-die-falschen-subventionen-in-die-energiewirtschaft

Hunderte Milliarden Dollar für fossile Energien:
http://www.wiwo.de/technologie/green/tech/subventionen-hunderte-milliarden-dollar-fuer-fossile-energien/13552464.html

http://dip21.bundestag.de/dip21/btd/18/068/1806834.pdf
„Europe’s Dark Cloud“: http://wwf.fi/mediabank/8633.pdf
http://www.deutschlandfunk.de/wwf-studie-zu-kohlekraftwerken-europa-unter-der-staubglocke.697.de.html?dram:article_id=359180
http://www.sueddeutsche.de/wissen/luftverschmutzung-toedliche-kohle-glocke-ueber-europa-1.3063507

Typische Schadstofffracht Kohlekraftwerk:
[UBA b] Stromsparen – Schlüssel für eine umweltschonende und kostengünstige Energiewende, 2015, Seite 23
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/hintergrundpapier_stromsparen_web.pdf
Abgleich mit europäischer Datenbank! Typisches deutsches Kohlekraftwerk auswählen.

5.x Die Lügenwelt des Stromnetzausbaus

– DENA-Studie I und II, Sturmtief „Xaver“

– Redispatchment-Maßbahmen – die schlechte Kommunikation der Regelzonen

Bei vollständiger Stromversorgung durch Erneuerbare Energien sinkt der Übertragungsbedarf von 602 TWh auf 394 TWh im Jahr

https://www.vde.com/de/verband/pressecenter/pressemeldungen/fach-und-wirtschaftspresse/2015/seiten/38-15.aspx

Die Versorgung mit Energie betrifft ausnahmslos alle, die gesamte Gesellschaft. Heute getroffene Entscheidungen haben weitreichende Auswirkungen bis weit in die Zukunft. Viele teils kostenintensive Maßnahmen sind nicht mehr rückgängig zu machen. Deshalb, weil alle betroffen sind, sollten auch alle das Recht haben mit zu entscheiden. Aber die grundsätzlichen Entscheidungen sind längst getroffen, die Bürger als Erbringer der Wirtschaftsleistung zur Bezahlung der Rechnung einmal mehr weitgehend außen vor gelassen.

http://www.dena.de/fileadmin/user_upload/Publikationen/Erneuerbare/Dokumente/Endbericht_dena-Netzstudie_II.PDF

Und zwar ohne die Bürger einzubeziehen oder zu fragen. In diversen Informationsveranstaltungen der BNetzA oder der ÜNB wird nur über Einzelheiten auf der Grundlage bereits festgelegter Grundsatzentscheidungen informiert. Statt eines ergebnisoffenen Dialogs, geht es um Beschwichtigung, Belehrung und Bestätigung der für partikulare Interessen großer Konzerne geeigneten Maßnahmen. Mit dem Thema Energie haben diese Maßnahmen zumeist nichts zu tun, dafür umso mehr mit Renditen und lukrativen Anlagemöglichkeiten. Wo der „freie“ Kapitalmarkt keine Renditen mehr erwirtschaftet, sucht das Kapital dann eben staatlich garantierte Gewinne, um den Bürgern weiterhin vermeintlich lukrative Finanzprodukte zu verkaufen, die sie durch die Hintertür doppelt bezahlen.

Diese Grundsatzentscheidungen sind zumindest fragwürdig. Denn wie läuft das in der Umsetzung ab? Als Folge solcher Entscheidungen werden die Übertragungsnetzbetreiber aufgefordert sogenannte Szenariorahmen zu erarbeiten. Auf deren Grundlage werden dann, ebenfalls von den ÜNB, die Ausbaupläne zum Netzausbau erarbeitet. Diese bereits sehr konkrete Planung wird der Bundesnetzagentur zugearbeitet. Die Aufgabe der BNetzA besteht gemäß ihrem Auftrag darin die Aufrechterhaltung und der Förderung des Wettbewerbs zu prüfen. Zu einer umfassenden technischen Prüfung ist die BNetzA weder beauftragt noch in der Lage.

Um es genauer und nachvollziehbar zu beschreiben: Es geht beim Netzausbau um die Sicherstellung von Versorgung mit Strom. Dazu werden in jedem Netzabschnitt die bereits gestellte Leistung nach einem bestimmten Zeitabschnitt – in der Regel ein 15 Minuten Intervall / Viertelstunde – betrachtet und dokumentiert. Warum eine Viertelstunde? Nun, weil das der Modus der Messungen und Abrechnungen für Strom ist. Für jeden Netzabschnitt, jede netzebene und jeden Bilanzkreis werden alle 15 Minuten die Leistungsdaten erhoben und die Energiemengen gemessen und dokumentiert.

Diese gelieferten Leistungen und die korrespondierenden abgefragten Lasten sind jedoch nicht das ganze Jahr konstant. Ein Jahr hat 8.760 Stunden, entsprechend 35.040 Viertelstunden und daher ebenso viele real messbare Zustände mit wechselnden Daten.

Wer nun denkt, um die durchgehende Versorgung sicherzustellen würde ein typisch auf maximale Sicherheit bedachtes konservatives Strommanagergehirn einfach in jedem Netzabschnitt die höchsten auftretenden Lasten/Leistungen und Energiemengen betrachten, der wird erstaunt feststellen, dass genau das nicht der Fall ist. Auf welcher Grundlage die für den Netzaufbaubedarf gewählten Intervalle – es handelt sich immer nur um ein beliebiges Intervall von 35.040 verfügbaren – ist nicht nachvollziehbar. Falls sich darüber überhaupt jemals jemand Gedenken gemacht hat, denn es gibt nirgends eine Behörde, die all diese Daten komplett zur Hand hat und auch kein Unternehmen, dass all diese Daten zusammen betrachten kann. Nein, die Datengrundlage für die Beurteilung der Vorschläge zum Netzausbau durch die BnetzA kommt von ein paar wenigen großen Energiekonzernen, in dem Fall Übertragungsnetzbetreibern.

In der Realität wäre das in etwa so, als würde man die Produktionsdaten von vier Großbrauereien an einem einzigen Nachmittag betrachten um daraus den Bierkonsum der gesamten Bundesrepublik zu berechnen und zu planen.

Kein Wunder, dass die gelieferten Ergebnisse umstritten sind, die BnetzA selbst keine solide Verifizierung liefern kann, und regelmäßig bezüglich ihrer Validität eine kaum wahrnehmbare Halbwertszeit aufweisen. Wie aber kann auch nur ein halbwegs vernunftbegabter Bürger dann darauf vertrauen, dass solche Grundlagen für Planungen über 50 Jahre und mehr tauglich sind.

Darüber hinaus erstaunt es, dass die Vertreter der BnetzA fachlich fast ausschließlich aus Juristen bestehen, die über keine ausreichend tiefe technische Expertise verfügen.

Die Grundlagen und Voraussetzungen der durch die ÜNB erarbeiteten Szenariorahmen und Ausbaupläne sind teilweise nicht öffentlich zugänglich.

Es ist klar zu erkennen: Es gibt kein Korrektiv. Was einzig noch bleibt ist der Widerstand, die Forderung der Bürger nach einer umfassenden Beteiligung an der Gestaltung der Energiewende. Aber genau das ist nicht möglich. Die technische Umsetzung der Energiewende ist sehr komplex und erfordert umfangreiche Sachkenntnisse auf vielen Fachgebieten. Wie kann ein einzelner Bürger das leisten? Um bestimmte Entscheidungen zu hinterfragen sind technische Sachinformationen notwendig. Diese Informationen werden jedoch für vertraulich erklärt. Damit wird klar, dass eine qualifizierte Mitarbeit nicht nur nicht erwünscht ist sondern auch unter Strafandrohung verhindert wird.

5.x Das neue Wirtschaftswunder

Umweltbundesamt: „Ökologische Modernisierung der Wirtschaft durch eine moderne Umweltpolitik“

http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/uib_02_2016_oekologische_modernisierung_der_wirtschaft_durch_eine_moderne_umweltpolitik_0.pdf

Investitionssumme für den Aufbau der notwendigen Erzeugungs- und Speicherkapazitäten, Elektromobilität; Powershift: Grenzenlose Freiheit? Was alles in einem Elektroauto steckt

http://power-shift.de/?p=1771, CO2-Aufwand Elektroauto:

http://www.zeit.de/mobilitaet/2014-01/elektroauto-energiebilanz/seite-2

Arbeitsmarkt: Die Bundesregierung handelt verantwortungslos: Automobilindustrie vor großen Umwälzungen – Energiewende löst das Arbeitsplatzproblem

Mit der Energiewende wird die Rente sicher: – Die Energiewende spart der Volkswirtschaft jedes Jahr 200 Mrd. Euro

zusätzlicher Energieaufwand (vermutlich auch CO2-Ausstoß) durch die Produktion der zusätzlichen Anlagen der erneuerbaren Energie (zum Beispiel durch Solarthermiemodule, Photovoltaikmodule, Batteriespeicher, wenn sie nicht in Südostasien gefertigt werden; Windkraftanlagen, Montageaufwand)
„Energiewende ist ressourcenblind“
http://green.wiwo.de/verbrauch-von-rohstoffen-energiewende-ist-ressourcenblind/

5.x Der technische Übergang

Maßnahmenkatalog – Ergebnis des Dialogprozesses zum Klimaschutzplan 2050 der Bundesregierung
http://www.klimaschutzplan2050.de/wp-content/uploads/2015/09/Massnahmenkatalog-3-1-final-Ergaenzungen-Anpassungen1.pdf
http://www.klimaschutzplan2050.de/ergebnis/ergebnis-des-dialogprozesses-der-massnahmenkatalog-3-1/
„Kopernikus-Projekte“ der Bundesregierung erwähnen:
https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html
https://www.kopernikus-projekte.de/projekte

Im Zuge der Energiewende wird sich die Bereitstellung der Energie von einer „versorgenden“ zu einer „selbstversorgenden“ Struktur wandeln. In der Vergangenheit wurde der Strom hauptsächlich von Großkraftwerken erzeugt und über die verschiedenen Netzebenen gewissermaßen „von oben“, der höchsten Spannungsebene „nach unten“ zu einer niederen Spannungsebene verteilt. Mit dem wachsenden Anteil der Erneuerbaren Energien an der Stromerzeugung wird immer mehr Strom in die unteren Spannungsebenen eingespeist und muss der herrschenden Vorstellung nach dann bei einem regionalen Stromüberschuss über höhere Spannungsebenen verteilt werden. Mit diesem Stromfluss in beide Richtungen sind große technische Herausforderungen verbunden. Das Problem ist, dass bereits heute weit mehr als eine Million Stromerzeugungsanlagen deutschlandweit in unterschiedliche Spannungsebenen, mit wechselnder Leistung und witterungsabhängig – und damit zeitlich eingeschränkt prognostizierbar – den Strom in ein mit vier Regelzonen [2.1d] zentral organisiertes Netz einspeisen. Eine Regelzone ist aber bereits ein dezentrales Netzgebilde, welches unter Einschränkungen Inselfähig ist. In den letzten Jahren mussten die Energieversorger immer mehr kurzfristige Eingriffe in die Leistungssteuerung (die sogenannten „Redispatchment-Maßnahmen“) vornehmen, um die Stromerzeugung mit dem Stromverbrauch im notwendigen physikalischen Gleichgewicht zu halten. [2.1e] Wenn nun im Rahmen der Energiewende der Strom von mehreren Millionen zusätzlicher Anlagen der Erneuerbaren Energien eingespeist und gemanagt werden soll, wird angeblich die Gefahr eines Ausfalls von großen Teilen der Strom- und damit auch der Energieversorgung oder sogar eines totalen Ausfalls („Black-Out“) mit katastrophalen Folgen immer größer. Inwieweit ein 100%-EE-Szenario unter Ausnutzung aller möglichen Quellen auf Basis der zu erwartenden Einspeiseleistungen und Mengen sich auswirkt wurde freilich noch nie betrachtet oder gar nur bedacht. Die enorme Anzahl von Stromerzeugungsanlagen wird angeblich nur noch durch eine verstärkte Automatisierung handhabbar aber nicht wirklich beherrschbar. Dahinter steckt allerdings die herkömmliche Betrachtungsweise, dass die Erzeugung der Anforderung direkt entsprechen muss. Speicherung, Lastmanagement, sektorale Produktionsverschiebungen, etc. werden auch hier nie in die Überlegungen einbezogen. Die entsprechenden Algorithmen wurden von Menschen erdacht und können Fehler enthalten. Es ist mit den aktuell angewandten Mitteln nicht möglich alle technischen Ausfälle von Netzkomponenten oder Betriebsstörungen mit ihren Kettenreaktionen in einem derart komplexen Versorgungssystem vorherzusagen und hierfür Lösungen zu programmieren. Hinzu kommt die zunehmende Gefahr von „Cyberangriffen“, das bewusste kriminelle Suchen nach Sicherheitslücken und Fehlfunktionen, mit dem Ziel, die Versorgungsstruktur lahm zu legen.

https://www.youtube.com/watch?v=AzEmvX8_1jc

Im Verbundprojekt „Intelligente Notstromversorgungskonzepte unter Einbeziehung Erneuerbarer Energien“ hat das Bundesministeriums für Bildung und Forschung die großen Gefahren länger anhaltender, großflächiger Unterbrechungen der Stromversorgung für Wirtschaft und Gesellschaft thematisiert und Strategien erforscht, mit denen im Krisenfall eine Minimalversorgung gewährleistet werden kann.

Ebenso hat das Büro für Technikfolgen-Abschätzung beim deutschen Bundestag die Folgen eines Black-Outs für die Gesellschaft in einer Studie beschrieben [2.1f] Ein genereller Lösungsansatz ist eine dezentrale Energieversorgung mit „inselfähigen Netzen“: Inselfähig heißt, dass sich innerhalb einer regionalen oder lokalen Versorgungsstruktur („Insel“) eine möglichst ausgeglichene Leistungsbilanz aus Erzeugern und Verbrauchern bilden lässt. In der VDE Studie „Der zellulare Ansatz“ wurde diese Möglichkeit untersucht.

https://d2230clyyaue6l.cloudfront.net/wp-content/uploads/VDE_ST_ETG_GANN_web.pdf

Dabei sind die einzelnen Inseln durch ein übergeordnetes Netz verbunden. Das grundsätzliche Ziel ist es, die benötige Leistung aus dem übergeordneten Netz bzw. die Stromlieferung in das übergeordnete Netz möglichst klein zu halten. Es ist leicht zu erkennen, dass die Lastflüsse im übergeordneten Netz dann völlig andere sind als bei der heutigen zentralen Netzstruktur.
Das Teilprojekt „C/sells“ des Förderprogramms „Schaufenster intelligente Energie“ des Bundesministeriums für Wirtschaft und Energie (Beginn Herbst 2016) setzt hier an, in dem eine Netzstruktur mit unterschiedlich großen Inseln gebildet und untersucht werden soll. Die Erwartung ist, dass damit eine effiziente und wenig störanfällige Energieinfrastruktur entsteht.
Im Teilprojekt „enera“ des gleichen Förderprogramms ist zudem die Datensicherheit bei der digitalen Vernetzung von Verbrauchern und Erzeugern einer der Arbeitsschwerpunkte [2.1.g] Der Datenaustausch muss dabei auf das unbedingt notwendige Maß mit höchsten Sicherheitsstandards begrenzt werden.
Dabei bedarf es nachdrücklicher Implementierung der Erweiterung sämtlicher Netzschnittstellen (Umspannwerke, Einspeisepunkte, Ausspeisepunkte, Trafostationen) um hinreichend große Akkuspeicher, durch die eine durchgängige Verknüpfung der Daten von der Erzeugung bis zum Endverbraucher im Detail überflüssig wird.
Die Versorgung mit Elektroenergie gehört, wie bereits an anderer Stelle gesagt, zur öffentlichen Daseinsvorsorge. Das heißt die Versorgung mit Elektroenergie muss unter allen denkbaren Umständen sichergestellt sein. Sicher wird der Grad der Sicherstellung von den Umständen abhängen und nicht 100% sein. Aber die für die Gesellschaft essenziellen Bedürfnisse müssen absolut vorrangig abgesichert werden. Für die Zeit des Übergangs von der Versorgung mit fossilen bis zur vollständigen Versorgung mit regenerativer Energie brauchen wir Übergangslösungen. In den Szenariorahmen der Übertragungsnetzbetreiber wird nur ein Anteil bis ca. 50 % EE berücksichtigt. Die notwendigen Maßnahmen zu 100 % EE werden also nicht geplant und fossile Erzeuger werden auch weiterhin zur laufenden Stromerzeugung eingesetzt. Von heute bis zum 100 % Zeitpunkt sind noch fossile Energieerzeuger notwendig. Diese Kraftwerke sollen aber zur laufenden Stromerzeugung nicht eingesetzt werden sondern dienen ausschließlich als Reserve.
Zuerst sind das die Gaskraftwerke als heiße Reserve, da diese auch mit Power to Gas Brennstoff betrieben werden können. Sie spielen also auch nach dem Ende von Kohle, fossilem Gas und Öl eine wichtige Rolle. Steinkohlekraftwerke werden als kalte Reserve konserviert und betriebsbereit vorgehalten. Sie erhalten einen definierten Kohlevorrat und werden nur im absoluten Ausnahmefall angefahren. Diese Maßnahmen sind so lange notwendig bis wir technisch in der Lage sind die gesamte benötigte Energie für einen festgelegten Zeitraum zwischenzuspeichern.

Meine Meinung: Bitte den Abschnitt etwas genauer ausführen und Leistung und Energie getrennt betrachten!

Der Umbau der Netzinfrastruktur hat zwei unterschiedliche Ziele:

die Sicherstellung der Versorgung der Bürger unseres Landes mit Energie im Sinne der öffentlichen Daseinsvorsorge und

die Erhaltung und Stärkung der internationalen Wettbewerbsfähigkeit der
Energieindustrie- Stromexport.

Der zweite Punkt ist das ausschließliche Ziel und wird bereits in der dena-Netzstudie II so definiert. Man könnte zu dem Schluss kommen, dass der erste Punkt damit automatisch erfüllt wird. Das ist jedoch ein Trugschluss. Das Problem ist, dass tausende Einspeiser an unterschiedlichen Stellen, auf unterschiedlichen Spannungsebenen, mit unterschiedlicher Kapazität, zu vorher nicht bekannten Zeitpunkten in ein zentral organisiertes Netz einspeisen. Ein solches Gebilde ist ein Widerspruch in sich. Eine massenhafte und weiterhin wachsende dezentrale Einspeisung von Elektroenergie soll mit einer zentralen Versorgungsstruktur verknüpft werden. Bereits in /3/ wird durch Fachleute davor gewarnt. Man kann die physikalischen Gesetzmäßigkeiten auf Dauer nicht ignorieren. Aber jedes technische System hat eine Toleranzschwelle, sowohl positiv als auch negativ. Diese zentrale Versorgungsstruktur wird nur durch verstärkte Automatisierung handhabbar, unter normalen ungestörten Bedingungen, aber nicht beherrschbar unter Stress, unter unvorhersehbaren Betriebsbedingungen. Die dazu notwendigen Programme und Algorithmen sind grundsätzlich nicht fehlerfrei. Nicht vorhersehbare Zustände und Fehler im Versorgungssystem können unvorhersehbare Kettenreaktionen auslösen. Wesentlich schwerwiegender sind jedoch Cyberangriffe, das heißt das bewusste Suchen nach Sicherheitslücken und Fehlfunktionen. Das führt im Extremfall zum gezielt herbeigeführten Versagen der Energieversorgung des ganzen Landes – zum Blackout.

Der Weg aus diesem Dilemma ist der Aufbau einer konsequenten dezentralen Versorgungsstruktur. Was bedeutet das im Einzelnen?

Die beschriebenen Vorgänge finden sich auch in einer dezentral organisierten Versorgungsstruktur wieder. Dazu werden innerhalb der vorhandenen Struktur inselfähige Netze gesucht und technisch organisiert. Inselfähig heißt, dass sich innerhalb der Insel eine ausgeglichene Leistungsbilanz aus Erzeugern und Verbrauchern bilden lässt. Die einzelnen Inseln sind sehr wohl durch ein übergeordnetes Netz verbunden. Das grundsätzliche Ziel einer Insel ist aber eine ausgeglichene Leistungsbilanz. Die benötige Leistung aus dem übergeordneten Netz, Lieferung oder Bezug, soll möglichst klein sein. Es ist leicht zu erkennen, dass die Lastflüsse im übergeordneten Netz völlig andere sind als bei einer zentralen Netzstruktur. Angestrebt wird also ein Zustand bei dem aus dem übergeordneten Netz kein Strom entnommen wird. In diesem Fall würde dieses Netz nicht belastet, es fließt kein Strom. Da aber dieser Idealzustand zwar angestrebt, aber nie vollständig erreicht wird, dient das Netz der Versorgungssicherheit. Das Netz ist mit dem Hosenträger an der Hose zu vergleichen. Aber die Hose sollte so gut sitzen, dass man auch ohne Hosenträger nicht gleich ohne Hosen dasteht. Gleichzeitig steigt die Versorgungssicherheit enorm. Bei einem angenommenen Ausfall des übergeordneten Netzes werden sich sehr viele Inseln bilden. Einen vollständigen Blackout durch die beschriebenen Kettenreaktionen kann es somit nicht geben.

Im Teilprojekt „„C/sells: Großflächiges Schaufenster im Solarbogen Süddeutschland“ des Bundesprojektes „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ wird genau diese Fragestellung untersucht:
„Das Schaufenster „C/sells“ überspannt im Süden Deutschlands die Bundesländer Baden-Württemberg, Bayern und Hessen und hat den Schwerpunkt „Solarenergie“… Kern des Schaufensters ist die Demonstration eines zellulär strukturierten Energiesystems, in dem regionale Zellen im überregionalen Verbund miteinander agieren. Die Größe der Zellen ist dabei sehr unterschiedlich. So können einzelne Liegenschaften oder ganze Verteilnetzbereiche solche Zellen bilden. Jede Zelle versorgt dabei subsidiär zunächst sich selbst, indem Energieerzeugung und Last möglichst direkt vor Ort ausgeglichen werden. Die verbleibenden Energiebilanzen werden dann mit anderen Zellen ausgetauscht, um so das Energiesystem insgesamt zu optimieren. Durch den Zellverbund entsteht dadurch eine effiziente und robuste Energieinfrastruktur.“ http://www.bmwi.de/DE/Themen/Energie/Netze-und-Netzausbau/sinteg.html

5.x Neue gesetzliche Rahmenbedingungen

Das Gesetz über die Elektrizitäts- und Gasversorgung, dem Energiewirtschaftsgesetz – EnWG, ist der rechtliche Rahmen zur Energieversorgung der Bundesrepublik Deutschland. Im Zuge der Liberalisierung des Energiemarktes wurde das EnWG schrittweise verändert. So wurde, um nur ein Beispiel zu nennen, die „Bundestarifordnung Elektrizität (BTOElt)“ im Jahr 2007 abgeschafft. Dort war im § 12 Tarifgenehmigung geregelt:

(1) Tarife und ihre einzelnen Bestandteile bedürfen der Genehmigung der Behörde….

In der Folge wurden die Strompreise durch die EVUs schnell angepasst. Zur Erinnerung, das Ziel der Liberalisierung war eine Senkung der Strompreise durch Wettbewerb. Dieser Effekt trat oberflächlich betrachtet nicht ein. Die Strompreise haben sich zwischen 2000 und 2014 für Haushaltskunden fast verdoppelt. Wie gesagt, stimmt das oberflächlich, folgt aber dem gleichen Irrtum wie ihn die Wortführer etlicher Mittelstandorganisationen begehen: Der Strompreis = Abgabepreis der Erzeuger für den reinen Strom ist tatsächlich deutlich gesunken. Was gestiegen ist, ist der Preis für die commodity „Elektrische Energie“, was aber an den Abgaben, Umlagen und steuern liegt, nicht am Preis für die Energie. Die ist faktisch viel zu billig, die Zusatzkosten übergehen nach wie vor die nachhaltigen Auswirkungen der jetzigen Produktionsweisen. Niedrigere Preise zu fordern ist genauso sinnfrei, wie Mietpreisbremsen. Die damit verbundenen Folgen zahlt der Verbraucher dann eben an anderer Stelle.

Generell ist es an der Zeit die Frage nach der Sinnhaftigkeit eines überall und allumfassend durchgedrückten Wettbewerbs „um jeden Preis“ aufzuwerfen. Dieser Leitgedanke einer neo-feudalen Politikerriege widerspricht sich selbst, wenn er behauptet, dass der Wettbewerb als vermeintlich einzig konstitutives Merkmal eines „freien Marktes“ alles regelt und automatisch für Ausgleich sorgt. Wettbewerb kann nur dort stattfinden wo ein Kunde/Verbraucher eine Auswahl zwischen verschiedenen Anbietern des gleichen Produkts hat. Das Produkt ist hier eine commodity, deren Preis sich aus verschiedenen Faktoren zusammensetzt. Der Teil der commodity, der von verschiedenen Anbietern geliefert werden kann, umfasst nur einen geringen Bruchteil des gesamten Produkts. Ein Qualitätsunterschied in der commodity ist so gut wie nicht vorhanden, da alles detailliert technisch genormt ist. Das Produkt taugt folglich nicht für Wettbewerb.

https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2014/10/PD14_354_61241pdf.pdf;jsessionid=07EF7ABC42F1C838525C77F9DDD44482.cae3?__blob=publicationFile

Die Preissteigerung hält weiterhin an weil es, bedingt durch die zentrale Struktur der Energieversorgung, keinen funktionierenden Wettbewerb geben kann. 70% der im Jahr 2015 erzeugten Energie wurden aus fossilen Energieträgern gewonnen. Die Betreiber fossiler Großkraftwerke sind E-ON, EnBW, Vattenfall und RWE. Sie bestimmen maßgeblich, schon durch ihren Marktanteil, den Strompreis. Im Prinzip ist der Strombedarf unter den gegenwärtigen Bedingungen relativ konstant. Er betrug im Jahr 2015 647 TWh. (Widerspruch zu ENTSOE Daten) Mehr war in der Bundesrepublik nicht zu verkaufen. Je größer der Anteil EE ist umso kleiner wird der Anteil fossiler Energie. Der Kuchen ist eben nur 100% groß. EE ist aber ein grundsätzlich dezentrales Element. Eigentlich kann jeder Energie erzeugen und in das Netz einspeisen. Aber mit jeder kWh EE geht der Anteil fossil erzeugter Energie zurück und damit der Profit der „großen vier“. Deshalb wird alles getan um den weiteren Ausbau der EE, ganz gleich in welcher Form, zumindest zu bremsen. Das geschieht über die Änderung und Anpassung des „Gesetzes für den Ausbau erneuerbarer Energien“ – EEG.

Heute, im Juni 2016, gilt die EEG- Novelle 2014. Dort wurde z.B. die direkte lokale Vermarktung des Stromes abgeschafft. Der Zwang den erzeugten EE Strom nur über die Börse zu vermarkten steht im Widerspruch zu den physikalischen Gegebenheiten. Der Strom wird, über das Umspannwerk in das eingespeist wird, zuerst in dem dortigen lokalen Versorgungsgebiet „verbraucht“. Erst die künstliche Zentralisierung EE im Handel ermöglicht eine Einflussnahme sowohl auf den Ausbau als auch auf den Betrieb der EE Anlagen. So ist es möglich EE Windanlagen zentral abzuschalten. Auch EE Solaranlagen werden stufenweise, abhängig von der Anlagengröße, in ein Netzmanagement einbezogen. So werden solche Anlagen wahlweise per Fernzugriff auf 70% der installierten Leistung (kWp) abgeregelt oder von vornherein auf 70% der installierten Leistung begrenzt. All diese Maßnahmen werden immer mit technischen Notwendigkeiten begründet. Es ist nicht möglich diese Begründungen nachzuvollziehen da sie auf Daten und Fakten beruhen die nicht vollständig öffentlich zugänglich sind.

– Wer baut und verdient, darf nicht planen!

In jedem Gemeinwesen, bei vielen Entscheidungen gilt der Grundsatz wer persönlich betroffen ist darf nicht entscheiden. Die konventionellen Energiekonzerne sind betroffen aber sie sollen die Energiewende, die Umstellung auf EE vorbereiten und umsetzen. Wir wissen, dass die vollständige Umstellung auf EE letztlich mit der Stilllegung aller fossilen Kraftwerke endet. Das ist ein radikaler Strukturwandel. Dieser Wandel sollte sinnvollerweise konsequent und schnell erfolgen, weil davon mit sehr hoher Wahrscheinlichkeit unser Überleben abhängt. Aber bei jedem Strukturwandel gibt es Gewinner und Verlierer. Die Energiekonzerne sind die Verlierer. Es ist deshalb völlig verständlich das sie diesen Zeitpunkt möglichst weit hinausschieben wollen. Sie nutzen deshalb ihren Einfluss auf die Politik zum Nachteil des Gemeinwesens. Sie wären systembedingt nie in der Lage auch nicht zeitweise auf Gewinne und Profite zu verzichten oder diese zumindest zu minimieren.

– keine Besteuerung der Eigenerzeugung, keine Besteuerung der Selbsterzeugung – Für das im Garten angebaute Gemüse muss auch keine Mehrwertsteuer bezahlt werden!

– neues System für Netzentgelte

– Einbeziehung der internalisierten Kosten in den Strompreis, Der Kohlestrom wird von der Gesellschaft subventioniert – nicht der Strom aus erneuerbaren Energien, – Aufgabe an die Politik: Jeder Strom hat seinen realen Preis!
Solar-Energieförderverein: „Internalisierungssteuer“

http://www.sfv.de/artikel/radikaler_kurswechsel_in_der_deutschen_energiepolitik.htm#toc05

– Internationale Energieforschung, BMWI Tabelle 44, Kündigung/Beendigung Euratom-Vertrag

5.x Die Bürger müssen es selbst machen

Die Politik mit der aktuellen Gesetzgebung unterstützt eine zügige Umsetzung der Energiewende nur bedingt. Die Vertreter der Interessenverbände der Energieindustrie üben ihren Einfluss sowohl auf europäischer als auch auf nationaler Ebene aus. Das Ziel ist dabei immer ihre marktbeherrschende Stellung zu erhalten und auszubauen. Wir wollen aber einen fairen Interessenausgleich.

Die Anlagenregisterverordnung regelt die Registrierung von EE Anlagen.
https://www.gesetze-im-internet.de/anlregv/BJNR132000014.html

§3 Anlagenregisterverordnung
(1) Anlagenbetreiber müssen Anlagen, die nach dem 31. Juli 2014 in Betrieb genommen werden, nach Maßgabe der Absätze 2 und 3 registrieren lassen.

Der Satz (1) ist nicht anzuwenden, wenn die Anlage nicht an ein Netz angeschlossen ist und der in der Anlage erzeugte Strom auch nicht mittels kaufmännisch-bilanzieller Weitergabe in ein Netz angeboten wird oder werden kann.

Das EEG- 2014 regelt die bevorzugte Einspeisung von Strom aus erneuerbaren Quellen in das (öffentliche) Stromnetz.
Im EEG § 61 ist dazu folgendes geregelt:
§ 61 EEG-Umlage für Letztverbraucher und Eigenversorger
(1) Die Übertragungsnetzbetreiber können von Letztverbrauchern für die Eigenversorgung folgende Anteile der EEG-Umlage nach § 60 Absatz 1 verlangen:
……
(2) Der Anspruch nach Absatz 1 entfällt bei Eigenversorgungen,
1. soweit…
2. wenn der Eigenversorger weder unmittelbar noch mittelbar an ein Netz angeschlossen ist,
3. wenn sich der Eigenversorger selbst vollständig mit Strom aus erneuerbaren Energien versorgt und für den Strom aus seiner Anlage, den er nicht selbst verbraucht, keine finanzielle Förderung nach Teil 3 in Anspruch nimmt, oder
4. wenn Strom …

Das bedeutet klar das Inselanlagen, also Anlagen nach (2) 2. vom EEG oder auch vom EnWG nicht erfasst werden. Ein Kabel welches die eine Inselanlage mit einer oder mehreren benachbarten Inselanlagen verbindet ist ebenfalls möglich, wenn es sich dabei um ein privates Netz handelt. Auch ein Wohnblock – ein Quartier enthält ein mitunter umfangreiches (privates) Netz zu Verteilung von Elektroenergie. Das Problem ist das bei Ausfall der EE Energie keine Verbindung zum öffentlichen Netz und damit keine Versorgung bestehen würde. Die Lösung besteht in der Aufteilung des (privaten) Netzes in mehrere Teilnetze. Ein Teilnetz ist mit dem öffentlichen Netz auf herkömmliche Weise verbunden. Ein weiteres Teilnetz ist „weder unmittelbar noch mittelbar an ein (öffentliches) Netz angeschlossen“. Dieses zweite Teilnetz ist dann ein Inselnetz, dient der Verteilung von EE an alle Netzteilnehmer und ist nicht vom EEG betroffen. Die technische Ausführung solcher elektrischen Anlagen ist problemlos möglich und kann sehr flexibel gestaltet werden.
Vorsicht im Fall (2) 3, es wird zwischen Letztverbraucher und Eigenversorgung unterschieden.

Die Selbstversorgung mit Photovoltaik und Speicher wird für den Stromerzeuger mit Hilfe des EEG und durch steuerliche Maßnahmen erschwert. So muss der Betreiber von EE Anlagen über 500 kW seinen Strom zwingend an der Strombörse anbieten.
http://www.energiedialog.nrw.de/das-neue-eeg-2014-was-aendert-sich/
Es ist nur ein minimaler Eigenverbrauch zugelassen. Die Steuerliche Bewertung des Eigenverbrauchs von Kleinerzeugern ändert sich jährlich. Die Vergütung für Solarstrom beträgt zurzeit 12,31 ct/kWh. Allein die jährlichen Abschreibungskosten betragen, je nach Anlagengröße etwa 10 ct/kWh. Es bleibt also ein Ertrag von 2,31 ct/kWh. Bei einer jährlichen Einspeisung von 5.000 kWh bleiben gerade mal 116 € Gewinn übrig. Reine Einspeisung lohnt sich nur ab einer bestimmten Anlagengröße. Der Eigenverbrauch von Solarstrom zählt als Privatentnahme und muss entsprechend versteuert werden. Das mindert den Gewinn zusätzlich.

Was können wir dagegen tun

Abmeldung der EE Anlage nach 5 Jahren oder die Errichtung besonders kleiner Anlage ohne Anmeldung. Die Kapazität einer Neuanlage nur 2 bis 3mal so groß bemessen (in KWp) wie der durchschnittliche eigene jährliche Strombedarf ist. Einspeisung des Überschusses ohne Vergütung. Eigenverbrauch und Bildung von Verbrauchergemeinschaften. Damit keine Steuern, keine Kontrolle. Der Gewinn ist der nicht benötigte Strom vom örtlichen Stromanbieter.

– Fernwärme
https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/energie/150310_HHI-Studie-Fernwaerme.pdf

Wir sind Energiepiraten

– der PKW wird elektrisch, 20% der PKWs sind Zweitwagen und könnten sofort auf vollelektrisch „umgestellt“ werden, die Stadt München fördert seit dem 1. April mit einem eigenen Programm:

http://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Gesundheit-und-Umwelt/Klimaschutz_und_Energie/Elektromobilitaet/Foerderprogramm_Elektromobilitaet.html

Deutsche Post baut Elektroautos:
http://www.iwr.de/news.php?e=x1416x&id=30994

Elektrische betriebene sind sehr viel weniger komplex als herkömmliche Fahrzeuge. Auf der Grundlage vorhandener Fahrwerke lassen sich und wurden bereits relativ schnell E-Fahzeuge entwickelt. Teuer sind zurzeit noch die Energiespeicher. Die Preise dafür werden bei einem Massenbedarf aber sehr schnell fallen. Zielpreis. < < 100 €/kWh

– Schnell raus aus den fossilen Antrieben:
http://www.zeit.de/mobilitaet/2016-04/auto-zukunft-benzinmotor-abschaffen-energiewende
Norwegen plant Verbot von Autos mit Benzinmotor
http://www.morgenpost.de/wirtschaft/article207212951/Norwegen-plant-Verbot-von-Autos-mit-Benzinmotor.html
(Niederlande auch)

– Beim Hausneubau auf Solarthermiemodule und Wärmepumpen, Photovoltaik (+ Speicher, wenn kostengünstiger geworden) zurückgreifen
Anzahl der im Jahr 2015 neu installierten Solarwärme-Anlagen: 101.000
Insgesamt installierte Solarwärme-Leistung 2015: 13,4 GW (th)
[Statistikpapier Solarthermie: https://www.solarwirtschaft.de/fileadmin/media/pdf/2016_3_BSW_Solar_Faktenblatt_Solarwaerme.pdf]

Wärmepumpen:

– kommunale Bürgerfonds zur Umsetzung kommunaler Energiesparmaßnahmen
Beispiel: Umstellung auf LED-Straßenbeleuchtung, (Stromersparnis und Verringerung der Lichtverschmutzung,
BMWI: „Es werde Licht – mit energiesparenden Straßenlaternen“
http://www.bmwi.de/DE/Themen/Technologie/Innovationsfoerderung-Mittelstand/hightechlights,did=580814.html
http://www.dena.de/fileadmin/user_upload/Publikationen/Stromnutzung/Dokumente/1430_Broschuere_Energieeffiziente-Strassenbeleuchtung.pdf
https://broschueren.nordrheinwestfalendirekt.de/herunterladen/der/datei/dormagen-final-pdf/von/strassenbeleuchtung-in-dormagen/vom/energieagentur/1779
In Deutschland werden jährlich bis zu 4 Mrd. kWh an Strom für die Beleuchtung von Straßen, Plätzen und Brücken verbraucht;
In Deutschland gibt es etwa 9,1 Millionen Straßenleuchten;
[„Straßenbeleuchtung mit LEDs und konventionellen Lichtquellen im Vergleich – Eine
licht- und wahrnehmungstechnische Analyse aus einer wissenschaftlich begleiteten Teststraße in Darmstadt“, 2009 https://www.nabu.de/stadtbeleuchtung/cd-rom/Inhalte/PDF/H4-9.pdf]
http://www.lichtverschmutzung.de/
http://www.wirsindheller.de/LED-Strassenleuchten.109.0.html
Medienmanipulation? Beschreiben fast nur Vorteile der LED und wählen eine negative Schlagzeile! http://www.welt.de/wissenschaft/umwelt/article145194509/Strassenlaternen-mit-LED-haben-Schattenseiten.html
Straßenbeleuchtung mit Wind:
https://www.ndr.de/fernsehen/sendungen/hallo_niedersachsen/Juist-bekommt-Windkraft-Strassenlaternen,hallonds32442.html
Straßenbeleuchtung mit Sonne:
http://www.gemeinde-train.de/index.php?id=564,165

Stadtwerke und Bürgerbeteiligung:
https://www.unendlich-viel-energie.de/mediathek/broschueren/stadtwerke-und-buergerbeteiligung

– Nachhaltig konsumieren und Geld sparen http://epea.com/de/fallstudien
Kreislaufwirtschaft: http://c2c-ev.de/c2c-konzept/kreislaeufe/

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 5

Das Orangebuch der Energiepiraten – meine Sicht – Teil 5

4 Die Erzeugung der Energie von morgen

Nachdem abgeschätzt wurde, wie groß der Energiebedarf in Deutschland bei einer nachhaltigen Energieversorgung sein wird, stellt sich die Frage, ob mit erneuerbaren Energien auch genügend Strom und Wärme erzeugt werden kann. Dazu muss geklärt werden, ob ausreichend Rohstoffe und ausreichend Flächen für den Aufbau dieser Erzeugungskapazität vorhanden sind.

Im Jahr 2015 wurden mit erneuerbaren Energien 196 TWh Strom erzeugt. Dies war ein Anteil von 32,6% an der Bruttostromerzeugung. [4a] Für die Wärmeversorgung stellten die erneuerbaren Energien 155 TWh bzw. 13,2% zur Verfügung. [4b] Für eine nachhaltige Energieversorgung muss jedoch ungefähr die sechsfache Menge an Strom und die dreieinhalbfache Wärmemenge erzeugt werden (siehe Kapitel 3.2). Welchen Beitrag sollen und können die einzelnen Technologien der erneuerbaren Energien leisten? Dies soll in den nächsten Kapiteln betrachtet werden.

4.1 Zukünftige Stromerzeugung in Deutschland

Photovoltaik bietet das größte Potential, da sämtliche versiegelte Flächen – immerhin 15 % der gesamten Fläche der Bundesrepublik – konfliktarm entweder direkt genutzt oder überdacht und dann genutzt werden können. Dazu zählen sämtliche Eisenbahnflächen, die rund 2% der Bundesfläche einnehmen, sämtliche Autobahne und Bundesstraßen und natürlich alle Gewerbegebiete, Industrieflächen Wohnflächen usw. Denkbar wäre es einen Anreiz zu setzen, indem die kommunale Grundsteuer um einen Nachhaltigkeitsfaktor ergänzt wird, der auf der Nichtnutzung für Energiegewinnung basiert. Auf Deutsch: Wer die Installation von PV, Solarthermie oder kleiner Windkraft (unter 10/12 Meter) unterlässt, muss für den nicht erzeugten EE-Strom eine CO2-Abgabe bezahlen. Das entspricht der Fehlbelegungsabgabe für Sozialwohnungen.

4.1.1 Stromerzeugung durch Wasserkraft

Bei Wasserkraftwerken wird die kinetische Energie von Wasser zur Erzeugung von elektrischem Strom genutzt.
In Deutschland gibt es Laufwasserkraftwerke, Speicherkraftwerke, und Pumpspeicherkraftwerke.
Laufwasserkraftwerke sind Kraftwerke bei denen in der Regel Zufluss und Abfluss gleich sind und nur eine geringe Regulierung der erzeugten Energie erfolgt. Sie sind deshalb typische Grundlastkraftwerke. Da sie permanent laufen können sie bei Blackouts zum Wiederaufbau des Netzes verwendet werden.
Speicherkraftwerke sind Kraftwerke die nur bei Bedarf elektrischen Strom erzeugen. Sie können bei Stromdefiziten im Netz sehr schnell zusätzlichen Strom bereitstellen und tragen damit zur Netzstabilisierung bei. Außerdem sind sie schwarzstartfähig und können deshalb bei Blackouts zum Wiederaufbau des Netzes verwendet werden.

Pumpspeicherkraftwerke werden in einem anderen Kapitel behandelt.
In Deutschland waren 2015 Wasserkraftwerke mit einer Gesamtleistung von 5.614 MW in Betrieb. Diese erzeugten 19.3 GWh Strom. Dies entsprach 3,3% der Stromerzeugung in Deutschland.

[http://www.bmwi.de/BMWi/Redaktion/Binaer/energie-daten-gesamt,property=blob,bereich=bmwi2012,sprache=de,rwb=true.xls]
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12
Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man vier Faktoren berücksichtigen:

1. Flächenverbrauch
2. Rohstoffverbrauch
3. Gesundheitliche Auswirkungen
4. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenverbrauch

Die geomorphologischen Auswirkungen der einzelnen Wasserkraftwerke sind naturgemäß relativ hoch. Ein allgemein gültiger Wert bezüglich der Relation Fläche/TWh kann deshalb nicht angegeben werden.

Rohstoffverbrauch

Für die Staumauern und teilweise auch für Dämme wird Beton verwendet.
Für die Dämme wird meistens Aufschüttmaterial z.B. Kies, Erde verwendet. Daneben wird für Wehre, Turbinen, usw. auch Stahl benötigt.

Gesundheitliche Auswirkungen

Es liegen keine Daten über gesundheitliche Auswirkungen von Wasserkraftwerken auf Menschen vor.

Auswirkungen auf die Tier- und Pflanzenwelt

Die Errichtung eines Wasserkraftwerkes stellt einen erheblichen Eingriff in die Natur dar. Dies betrifft sowohl Flora und Fauna. Abhängig vom jeweiligen Standort kann es durch den Bau sogar zu einer vollkommenen Umgestaltung des Biotops kommen.

Zukünftige Weiterentwicklung der Wasserkraft

Der Bundesverband Deutscher Wasserkraftwerke geht davon aus, dass bis 2030 die Stromproduktion auf 31 TWh gesteigert werden kann.

http://www.wasserkraft-deutschland.de/wasserkraft/potentiale.html
Je ein Drittel der Produktionssteigerung entfällt auf Modernisierung, Reaktivierung von stillgelegten Anlagen und Neubauten.
Dies würde jeweils knapp 4 TWh für die jeweiligen Maßnahmen entsprechen. Dagegen geht die Bundesregierung von einem deutlich geringeren Zubau aus. In der Studie „Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland“

[http://www.die-klima-allianz.de/?email_id=91&user_id=961&urlpassed=aHR0cDovL2tsaW1hbWVkaWF0aGVrLmRlLw%3D%3D&controller=stats&action=analyse&wysija-page=1&wysijap=subscriptions]

wird das realisierbare Zubaupotential wie folgt untergliedert.
Zubaupotential an großen Gewässern:
Zubaupotential an bestehenden Standorten 2,7 TWh.
Zubau durch Neubauten 1,3 TWh. Jedoch wird die Verwirklichung als schwierig angesehen.
Für mittelgroße und kleine Gewässer wird ein technisch-ökonomisch-ökologisches Zubaupotential
von etwa 0,4 TWh abgeschätzt.
Dies bedeutet insgesamt einen möglichen Zubau von 3,1 TWh.
Diese Zahl erscheint deutlich realistischer als die vom Bundesverband Deutscher Wasserkraftwerke abgeschätzte Zahl.
Damit ergibt sich für die Zukunft eine Stromerzeugung von 22,7 TWh durch Wasserkraftwerke.

Atlas zum Beispiel für Laufwasserkraftwerke oder Geothermie mit Erzeugungsdaten:

http://www.energie-experten.org/energieatlas.html?id=186&tx_eeenergieatlas_pi1[postleitzahl]=&tx_eeenergieatlas_pi1[energiequelle]=6&tx_eeenergieatlas_pi1[suchen]=ok
(Link komplett in den Browser kopieren!)

4.1.2 Stromerzeugung mit Klär- Deponie- und Grubengas

Im Faulturm einer Kläranlage entsteht bei der biologischen Umsetzung Klärgas. Dieses kann in einen Gasspeicher gepumpt werden, aus dem die Heizkessel des Klärwerks und ein Gasmotor für die Stromerzeugung versorgt werden. Die bei der Verstromung entstehende Wärme kann ebenfalls als Prozesswärme im Klärwerk eingesetzt werden. Das Klärgas setzt sich im Wesentlichen aus den Komponenten Methan – ca. 60% je nach organischen Einsatzstoffen etwas schwankend – und ca. 37% Kohlendioxid sowie weiteren Spurenstoffen zusammen. [4.1.2a]

Auch in Mülldeponien entsteht hauptsächlich durch den bakteriologischen und chemischen Abbau von organischen Inhaltsstoffen des Mülls das Deponiegas. [4.1.2b] Hauptbestandteile sind Methan zu 35% bis 60% und Kohlendioxid zu 20% bis 45% wobei der Methan-Gehalt im Verlauf der Jahre abnimmt. [4.1.2c]

Beim Steinkohleabbau wird das sogenannte „Grubengas“ freigesetzt. Untertage ist das methanhaltige Gas ein Sicherheitsproblem, da es in bestimmten Konzentrationen explosiv ist und damit das Leben der Bergleute gefährdet. Es muss daher sicher abgeführt werden und kann zur Strom und Wärmeerzeugung genutzt werden. Für die energetische Nutzung des Grubengases ist auf Grund der schwankenden Methangasgehalte von 30 bis 80 Volumenprozenten allerdings eine spezielle Anlagen- und Gasmotorentechnik erforderlich. [4.1.2d]

Im Jahr 2014 wurden 1,3 TWh Strom mit Klärgas und 0,5 TWh mit Deponiegas [4.1.2e] und nach Angaben des Interessenverbands „Grubengas e. V.“ 0,8 TWh Strom in den nordrheinwestfälischen Kohlekraftwerken. [4.1.2f]

Es ist davon auszugehen, dass zukünftig durch nachhaltige Produktionskonzepte (siehe das „cradle to cradle“-Konzept) die Deponierung von Reststoffen und durch das Schließen der letzten deutschen Kohlezechen in wenigen Jahren die aus Deponie- und Grubengas erzeugte Strommenge deutlich abnehmen wird. Auch der Anteil des Klärgases an der Stromerzeugung ist bereits heute gering. Daher wird der Anteil der Stromerzeugung aus diesen Gasen bei den weiteren Berechnungen vernachlässigt.

4.1.3 Stromerzeugung mit Biomasse

Biogas entsteht durch mikrobiellen Abbau organischer Stoffe.
Neben organischen Abfallstoffen wie Klärschlamm, Bioabfall, Gülle, Mist und Pflanzenresten werden inzwischen hauptsächlich sogenannte Energiepflanzen zur Biogaserzzeugung verwendet. Diese werden speziell für die Erzeugung von Biogas angebaut und stehen damit in direkter Konkurrenz zur Produktion von Nahrungsmitteln. In Deutschland wird hauptsächlich Mais zur Erzeugung von Biogas verwendet. Im Jahr 2013 wurde mit rund 0,9 Millionen Hektar ca.1/3 der Maisanbaufläche für die Biogasproduktion genutzt. [3.1a] Im Jahr 2013 waren 7720 Anlagen mit einer installierten elektrischen Leistung von 3.550 MW in Betrieb. Diese erzeugten 27 TWh Strom, was 4,3% des deutschen Stromverbrauchs entsprach. [3.1a]

Biogas besteht hauptsächlich aus Methan und CO2. Der Methangehalt und der Ertrag je Tonne Rohmasse ist abhängig vom verwendeten Ausgangsmaterial. Da der Methanertrag pro ha beim Anbau von Mais am höchsten ist wird hauptsächlich Mais als Ausgangsmaterial verwendet. [3.1b] Bei dem entstehenden Biogas liegt der Methangehalt zwischen 50% und 75%. [3.1b] Da die Reinigung von Biogas technisch sehr aufwendig ist wird es in der Regel direkt verwertet und nicht in das bestehende Erdgasnetz eingespeist.

Da Biogas aus nachwachsenden Rohstoffen erzeugt wird ist seine CO2 Bilanz neutral. Jedoch entweicht bei der Produktion Methan. Dieses hat eine um den Faktor 25 höhere Klimaschädlichkeit als CO2. Deshalb kann die Verwendung von Biogas nicht als klimaneutral angesehen werden. Beim Anbau von Mais als Biosubstrat werden verstärkt Dünger und Pflanzenschutzmittel eingesetzt. Außerdem sind in den letzten Jahren die Pachtpreise für Ackerland angestiegen.

Biogasanlagen sind laut Baugesetzbuch (BauGB) §35 im Außenbereich privilegierte Bauvorhaben, falls sie eine bestimmte Größe nicht überschreiten. [3.1c] Dies erleichtert den Bau von Biogasanlagen.

Die Stromerzeugung aus Biogasanlagen erfolgt heute in der Regel im Dauerbetrieb.
Deshalb wären Biogasanlagen grundlastfähig.
Aufgrund der Bauweise, bei der die Stromerzeugung mit Gasturbinen erfolgt, wäre jedoch auch eine Nutzung zur Bereitstellung von Regelenergie möglich. Jedoch müssten die gesetzlichen Grundlagen für die Bereitstellung von Regelleistungen geändert werden, damit dieser Modus für die Betreiber rentabel wäre.

Bei einer Gesamtbewertung der Stromerzeugung aus Bioenergie kommt man zu keinem eindeutigen Ergebnis. Einerseits kann man die Verwertung von organischen Abfällen positiv bewerten, andererseits ist der Anbau von Energiemais jedoch schädlich für eine ökologische Landwirtschaft und den Erhalt der Artenvielfalt. Auch könnte die Bereitstellung von Regelenergie als Ausgleich für die fluktuierende Stromerzeugung durch PV und Windkraftanlagen genutzt werden. Mitzudenken sind in jedem Fall die spezifischen Erzeugungskosten von 20 ct. / kWh bis 22 ct. / kWh. Wirtschaftlich also jedoch nur über massive Subventionen oder Belastung der konkurrierenden Technologien über CO2-Abgaben.

Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man fünf Faktoren berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenbedarf

Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Biogas ist sehr hoch. Im Jahr 2013 wurden 1,268 Mio. Hektar Anbaufläche in der Bundesrepublik Deutschland für die Produktion der Rohstoffe zur Biogasproduktion genutzt. [3.1e] Dies entspricht rund 10% der Ackerfläche in Deutschland. Da damit 2013 nur ca. 4,3% des deutschen Strombedarfs gedeckt worden sind ist offensichtlich, dass Biogas niemals einen entscheidenden Anteil an der Stromproduktion haben kann.
Zudem ist zu berücksichtigen, dass die Produktion von Pflanzen für die Stromerzeugung zu einer Konkurrenz mit der Nahrungsmittelproduktion führt. Es werden deshalb auch vermehrt Futtermittel für die Fleischproduktion importiert, da die entsprechenden Flächen für eine heimische Produktion nicht mehr zur Verfügung stehen. [3.1f]

Rohstoffverbrauch

Neben den Flächen werden bei der Produktion von Energiepflanzen große Mengen an Düngemittel und Pflanzenschutzmitteln verwendet. Für deren Herstellung werden große Mengen an Phosphat, Erdöl und weitere Rohstoffe benötigt.

Recycling von alten Anlagen

Für das Recycling von alten Anlagen existieren etablierte Verfahren.

Gesundheitliche Auswirkungen

Es gibt bisher keine belastbaren Aussagen über direkte gesundheitliche Schäden. Indirekt ist jedoch eine Nitratbelastung des Trinkwassers bzw. durch Pestizide möglich.

Auswirkungen auf die Tier- und Pflanzenwelt

Durch den vermehrten Einsatz von Düngemittel und Pflanzenschutzmitteln kommt es zu einer Beeinträchtigung der Tier- und Pflanzenvielfalt. Ebenso führt der großflächige Anbau von Maismonokulturen zu einer weiteren Beeinträchtigung der Biodiversität. [3.1g]

Zukünftige Weiterentwicklung der Stromerzeugung durch Biogas

Mit der EEG Novelle 2014 wurde eine Limitierung des Zubaus festgelegt. [3.1d] Der Zubau soll nicht mehr als 100 Megawatt installierter Leistung pro Jahr betragen.
Bei einer Änderung der Vergütungsstruktur wäre statt des heute üblichen Dauerbetriebs auch ein bedarfsorientierter Betrieb möglich. Dabei sollte die Vergütung nicht unabhängig vom aktuellen Stromangebot sein, sondern bei einem geringen Stromangebot aus anderen erneuerbaren Energien ein höherer Preis bezahlt werden. Damit könnten verminderte Einspeisungen von Windkraftanlagen und PV Modulen zumindest teilweise ausgeglichen werden.

Diesen möglichen positiven Effekt stehen jedoch erhebliche ökologische Nachteile entgegen.

Wegen der negativen Auswirkungen auf Natur und Umwelt sollte der weitere Anbau von sogenannten Energiepflanzen mittelfristig reduziert und langfristig gestoppt werden. Diese Flächen könnten dann für eine nachhaltige Nutzung an die bäuerliche Landwirtschaft zurückgegeben werden. Die Option der Energiewälder (Hackschnitzel Pellets) darf dabei bitte nicht pauschal mit verworfen werden. Diese sind sehr sinnvoll und bauen Böden neu auf.

Für die Biogaserzeugung mittels organischer Abfallstoffe sollten strengere Umweltauflagen eingeführt werden. Dies würde zu einer deutlichen Reduktion der Stromerzeugung durch Biogas führen. Es wird von einer Reduktion auf 25% der heutigen Kapazität, also 5,5 TWh ausgegangen.
http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/erneuerbare-energien-in-zahlen-2015.pdf?__blob=publicationFile&v=3

Da der Anteil der Stromerzeugung durch Biogas jedoch sehr gering ist könnte diese Verminderung leicht durch andere erneuerbare Energien ersetzt werden.

Alternativ bietet die Biomasse als direkte Quelle für CO2 zu synthetischem Methan und durch Reformeirung und Entschwefelung des ohnehin anteilig entstehenden Methans die Option, dieses biogene Gas statt lokaler Verbrennung vor Ort wo die Wärme meist kaum genutzt werden kann, einfach in das Gasnetz einzuspeisen. Das Gasnetz flächendeckend zur Versorgung auszubauen ist ohnehin eine wichtige Option, da Erdgas noch sehr lange vorhanden sein wird, klimafreundlicher ist als Öl, Benzin und Diesel und via Gas-Elektro-Hybridfahrzeugen eine deutliche stärkere Rolle im Verkehr spielen wird.

Quellen und weiter Informationen:

[3.1a] https://web.archive.org/web/20141214165348/http://media.repro-mayr.de/44/623744.pdf
[3.1b] https://mediathek.fnr.de/media/downloadable/files/samples/b/r/brosch-biogas-2013-web-pdf_1.pdf
[3.1c] http://www.gesetze-im-internet.de/bbaug/
[3.1d] http://www.gesetze-im-internet.de/eeg_2014/
[3.1e] http://www.statistischesbundesamt.de/
[3.1f] https://www.bund-naturschutz.de/fileadmin/_migrated/content_uploads/Biomassenutzung__Positionspapier_Biogas.pdf
[3.1g] http://www.bund-naturschutz.de/

Bundesministerium für Ernährung und Landwirtschaft

http://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Bioenergie-NachwachsendeRohstoffe/FNR-Basisdaten-Bioenergie-2013.html

Fachverband Biogas e.V

http://www.biogas.org/edcom/webfvb.nsf/ID/DE_Homepage

https://de.wikipedia.org/wiki/Biogas
http://www.onmitan.de/
http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Entwicklung_der_erneuerbaren_Energien_in_Deutschland/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.html

Biomasse

Unter Biomasse werden hier feste Brennstoffe aus nachwachsenden Rohstoffen verstanden. Der überwiegende Teil davon wird in Deutschland für reine Heizzwecke verwendet. (Siehe hierzu das entsprechende Kapitel unter Wärmeerzeugung). Im Jahr 2012 waren in Deutschland 540 Biomasseheizkraftwerke mit einer installierten elektrischen Leistung von 1.560 MW und einer Stromerzeugung von 8,4 TWh in Betrieb. [3.2a]
Die meisten Biomasseheizkraftwerke sind als Kraft-Wärme-Kopplungsanlagen in Betrieb. In diesem Modus erreichen sie einen Gesamtwirkungsgrad von bis zu 80% Prozent. Ansonsten erreichen sie einen Wirkungsgrad von 25%-30% Prozent für die Erzeugung von elektrischer Energie.

Umwelttechnisch problematisch sind Biomasseheizkraftwerke wenn sie nicht nur unbehandelte Biomasse verbrennen, sondern behandeltes Holz oder teilweise auch Kunststoffabfälle verfeuern. (So wie z.B. die Biowärme Kaufering mit einer Öleinspritzung zur Spitzenlasterzeugung) Es handelt sich dann um Müllverbrennungsanlagen. Sie arbeiten nach dem gleichen Prinzip wie Biomasseheizkraftwerke, müssen dabei aber sehr strenge Umweltauflagen einhalten.

Ökologische Betrachtung

Bei der ökologischen Betrachtung muss man fünf Faktoren berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Flächenbedarf
Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Biomasse ist sehr hoch.

Rohstoffverbrauch
In der Forstwirtschaft werden im Vergleich zur übrigen Landwirtschaft relativ wenig Düngemittel und Pflanzenschutzmitteln eingesetzt. Deshalb ist der Rohstoffverbrauch im Vergleich zur normalen Landwirtschaft auch gering. Bei der Nutzung von Kurzumtriebsplantagen werden leider jedoch vermehrt Düngemittel eingesetzt. (Gier macht Blind)

Recycling von alten Anlagen
Für das Recycling von alten Anlagen existieren etablierte Verfahren.

Gesundheitliche Auswirkungen
Es gibt bisher keine belastbaren Aussagen über direkte gesundheitliche Schäden. Indirekt ist jedoch eine Nitratbelastung des Trinkwassers bzw. durch Pestizide beim Anbau von Biomasse möglich. Außerdem ist bei der Verbrennung von Abfällen eine mögliche Schadstoffbelastung durch behandelte Materialien nicht auszuschließen.

Auswirkungen auf die Tier- und Pflanzenwelt

Bei der energetischen Nutzung von Biomasse verbleiben im Gegensatz zur üblichen Holzwirtschaft keine Abfälle im Wald, da diese ja ebenfalls verbrannt werden können. Diese fehlen dann im Biotop und beeinträchtigen damit die Biodiversität. Speziell gilt dies für Kurzumtriebsplantagen in denen oft auch standortfremde Arten gepflanzt werden.

Zukünftige Weiterentwicklung der Biomassenutzung

Die Stromerzeugung aus Biomasseheizkraftwerken erfolgt heute in der Regel im Dauerbetrieb. Jedoch wäre auch eine Nutzung zur Bereitstellung von Regelenergie möglich. Dazu müssten jedoch die gesetzlichen Grundlagen für die Bereitstellung von Systemdienstleistungen geändert werden damit dies für die Betreiber rentabel wäre. Jedoch ist zu berücksichtigen, dass ein größerer Ausbau der Erzeugungskapazitäten nicht möglich ist. Denn die genutzten Brennstoffe wachsen nur relativ langsam nach.
Wegen der negativen Auswirkungen auf Natur und Umwelt sollte der weitere Anbau von sogenannten Energiepflanzen mittelfristig reduziert und langfristig gestoppt werden. Diese Flächen könnten dann für eine nachhaltige Nutzung an die bäuerliche Landwirtschaft zurückgegeben werden.
Über die Nutzung von Abfallstoffe sollten strengere Umweltauflagen eingeführt werden.
Dies würde zu einer deutlichen Reduktion der Stromerzeugung durch Biomasse führen.
Es wird von einer Reduktion auf 25% der heutigen Kapazität, also 2 TWh ausgegangen.

http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/erneuerbare-energien-in-zahlen-2015.pdf?__blob=publicationFile&v=3]
Da der Anteil von Biomasse bei der Stromerzeugung jedoch sehr gering ist könnte diese Verminderung leicht durch andere erneuerbare Energien ersetzt werden.

Quellen und weitere Informationen:

[3.2a] http://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Bioenergie-NachwachsendeRohstoffe/FNR-Basisdaten-Bioenergie-2013.pdf?__blob=publicationFile

Bund Naturschutz in Bayern e.V.
http://www.bund-naturschutz.de/

https://de.wikipedia.org/wiki/Biomasseheizkraftwerkhttps://de.wikipedia.org/wiki/Biomasse
http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Entwicklung_der_erneuerbaren_Energien_in_Deutschland/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.html

4.1.4 Stromerzeugung mit Windkraftanlagen auf See

Die Stromerzeugung mit Windkraftanlagen auf See ist die technisch aufwendigste [4.1.4a] und mit bis zu 19,4 Cent/kWh auch zweitteuerste Stromerzeugung mit erneuerbaren Energien. Vergleicht man die Vergütungssätze im „Erneuerbare-Energien-Gesetz“ (EEG), so ist die Kilowattstunde ungefähr 60% teuer als die mit Photovoltaik und dreimal so teuer als die mit Windkraftanlagen an Land erzeugte. Lediglich Strom aus Geothermie ist nach wie vor wider jede Vernunft mit 25 ct / kWh vergütet und löst immense Direktsubventionen einzelner Kommunen aus Steuermittel aus, die niemals zurückerwirtschaftet werden. [4.1.4b]

Zum 31.12.2015 war eine Leistung von 3,3 GW Off-Shore Windkraft an das Stromnetz angeschlossen [4.1.4c] und sie soll nach den Vorgaben des „Erneuerbare Energien Gesetzes“ bis zum Jahr 2030 auf 15 GW ausgebaut werden. [4.1.4d] Dann ist mit einer Stromerzeugung von ca. 60 TWh im Jahr zu rechnen. Dies ist jedoch nur ein Anteil von 5% der zukünftig erforderlichen Strommenge. Aufgrund der vergleichsweise hohen Kosten für die Stromerzeugung und für den notwendigen Ausbau des Stromübertragungsnetzes sowie des trotz eines erheblichen Aufwands nur kleinen Anteils an der erforderlichen Stromerzeugung ist ein weiterer Ausbau über das Jahr 2030 hinaus nicht sinnvoll.

(„Merksatz“:) Ausbau-Stopp für Windkraftanlagen auf See spätestens ab einer Leistung von 15 GW

4.1.5 Stromerzeugung mit Windkraftanlagen an Land

Windkraftanlagen an Land werden von Menschen bereits seit fast 4.000 Jahren genutzt. Ursprünglich wurden sie als Getreidemühlen und Wasserpumpen genutzt. Aber auch als Kraftmaschinen im Gewerbe wurden sie eingesetzt. Diese Nutzung ging jedoch mit der industriellen Revolution zurück und die Mehrzahl der Windmühlen wurde aufgegeben.
Wenn man heute von Windkraftanlagen spricht, dann wird von Anlagen zur Erzeugung elektrischer Energie gesprochen. 1991 begann mit dem Stromeinspeisungsgesetz der Aufschwung der Windenergienutzung in Deutschland. Mit dem seit dem Jahr 2000 gültigen EEG nahm die Nutzung der Windenergie einen weiteren Aufschwung.
Neben der Anzahl der Anlagen stieg auch die Leistung der einzelnen Anlagen. Während Anfangs Windkraftanlagen mehr oder minder Einzelanfertigungen waren werden die Anlagen inzwischen industriell in Serie gefertigt.
Ende 2015 gab es in Deutschland an Land (onshore) 25.980 Anlagen mit einer Nennleistung von 41.652 MW. [3.3a] Offshore speisten 546 Anlagen mit einer Nennleistung von 2.282 MW ins Netz ein. [3.3b]
Insgesamt speisten Windkraftanlagen 2015 86 TWh Strom ins deutsche Netz ein. [3.3c] Der weitere Ausbau von Offshore-Anlagen ist jedoch durch die EEG Novelle von 2014 auf 6500 MW Nennleistung bis 2020 begrenzt. [3.3d]

Die Windkraftanlagen sind nicht gleichmäßig in Deutschland verteilt. Die Mehrzahl der Anlagen steht in den nördlichen, windreichen Bundesländern. Erst in den letzten Jahren bieten die Hersteller spezielle Anlagen für geringere durchschnittliche Windgeschwindigkeiten an, so dass auch in den südlichen, windschwächeren Bundesländern der Betrieb von Windkraftanlagen rentabler wird.

Dadurch, dass Windkraftanlagen vom Wind abhängig sind können sie nicht kontinuierlich Strom produzieren. Die Bundesnetzagentur rechnet für Windkraftanlagen daher nur mit einer gesicherten Leistung von 0,5%, obwohl die Realität deutlich mehr zeigt.
Der weitere Ausbau der Windenergie wird zunehmend durch Proteste behindert. Die Argumente gehen dabei vom Naturschutz bis zu gesundheitlichen Gefahren durch Infraschall und dem deutlichen Wertverlust von Immobilien angrenzender Wohnbebauung. Auch das irreführende Bild einer fluktuierenden Stromerzeugung (Flatterstrom) und eine angebliche Unrentabilität von Windkraftanlagen wird oft von Gegnern ins Feld geführt. [3.3f] Eine besondere Rolle bei der Verhinderung von Windkraftanlagen spielt Bayern. Hier ist durch die sogenannte 10H Regelung der weitere Ausbau der Windenergienutzung faktisch zum Erliegen gekommen. [3.3g] [3.3h]. In 2015 wurde genau ein Windpark mit vier Windrädern gemäß der 10-H-Regelung genehmigt. Der Rest bestand aus der Umsetzung von Altanträgen.

Ökologische Betrachtung

Bei der ökologischen Betrachtung von Windkraftanlagen sind fünf Faktoren zu berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch
3. Recycling von alten Anlagen
4. Gesundheitliche Auswirkungen
5. Auswirkungen auf die Tier- und Pflanzenwelt

Eine datenbasierte Analyse erforderlich, u. a. deshalb:
„Energiewende ist ressourcenblind“

http://green.wiwo.de/verbrauch-von-rohstoffen-energiewende-ist-ressourcenblind/

Ressourceneffizienz für den Bereich der erneuerbaren Energien bedeutet, die Systeme für Versorgung, Umwandlung, Speicher und Transport mit minimalem Aufwand an Fläche und Rohstoffen auszulegen. Es geht um die Erhöhung der lebenszyklusweiten Materialeffizienz und die Verringerung des Flächenbedarfs. Der Gesamtaufwand an stofflichen Primärressourcen sollte systemweit verringert und der Anteil von rezykliertem Material sukzessiv gesteigert werden. Beim Flächenaufwand kann insbesondere im Bereich der Bioenergie die Konkurrenz mit Nahrungsmitteln und stofflichen Verwendungen der Biomasse verringert werden.

http://www.fvee.de/forschung/forschungsthemen/effizienz/

Studien zur Ressourceneffizienz:

Fraunhofer IPA: „Analytische Untersuchung zur Ressourceneffizienz“, April 2015
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

Nexus Ressourceneffizienz und Energiewende, Oktober 2014:
hhttp://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

Hier finden sich alle Daten zu den untenstehenden Themenbereichen der Windkraft:

VDI Zentrum für Ressourceneffizienz: „Technologien und Ressourceneffizienz in der Windenergie“

http://windenergie.ressource-deutschland.de/
http://windenergie.ressource-deutschland.de/

Kurzanalyse Nr. 9: Ressourceneffizienz von Windenergieanlagen
http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/2014-Kurzanalyse-VDI-ZRE-09-Ressourceneffizienz-Windenergieanlagen.pdf

Flächenverbrauch

Der Flächenbedarf für die Erzeugung von elektrischer Energie durch Windkraftanlagen wird oft als zu hoch für die Bundesrepublik Deutschland dargestellt.
Eine Windkraftanlage der 3 MW Klasse benötigt eine Fundamentfläche von 300 m². Für Wartungsarbeiten wird eine frei zugängliche Fläche von ca. 50*50 Metern benötigt. Bei dieser Fläche ist jedoch eine weitere landwirtschaftliche Nutzung fast uneingeschränkt möglich.

Anders sieht die Situation bei den Abständen zwischen den einzelnen Windkraftanlagen aus. Zwischen den einzelnen Windkraftanlagen müssen anlagenabhängig größere Abstände eingehalten werden. Doch auch bei diesen Flächen ist eine landwirtschaftliche Nutzung fast uneingeschränkt möglich.

Rohstoffe

Windkraftanlagen bestehen hauptsächlich aus Beton und Stahl.
Das Fundament des Turmes besteht aus Stahlbeton. Der Turm besteht entweder komplett aus Stahl oder bei sogenannten Hybridtürmen im unteren Teil aus Beton und dem oberen Teil aus Stahlsegmenten. Hybridtürme sind bei größeren Windkraftanlagen inzwischen Standard.
Beton und Stahl sind häufig und stellen somit keinen Engpass bei der Errichtung von Windkraftanlagen dar.
Die Rotorblätter moderner Windkraftanlagen bestehen entweder aus glasfaserverstärktem Kunststoff oder aus kohlefaserverstärktem Kunststoff. Auch die Bestandteile der Rotorblätter stellen keinen rohstofflichen Engpass bei der Errichtung von Windkraftanlagen dar.
Der wichtigste Bestandteil einer Windkraftanlage ist das Maschinenhaus bzw. Gondel. In ihm sind der Generator, die Windnachführung, Steuerungselektronik und eventuell ein Getriebe untergebracht. Bei den Generatoren kommen hauptsächlich Asynchrongeneratoren zum Einsatz. Bei den Synchrongeneratoren wird zwischen fremderregten und permanenterregten unterschieden. Nur bei permanenterregten Synchrongeneratoren kommen Neodym-Eisen-Bor Magnete zum Einsatz, bei deren Rohstoffgewinnung es zu Umweltproblemen kommt. Deshalb sollte langfristig gesehen auf permanenterregte Synchrongeneratoren verzichtet werden und stattdessen sollten fremderregte verwendet werden.

In der Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), wird ab Seite 56 auf den Rohstoffverbrauch für offshore Windenergieanlagen (für 1GW Leistung) eingegangen. [https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Die Energierücklaufzeit, also die Zeit in der die für die Herstellung verbrauchte Energie wiedergewonnen ist beträgt ca. 5-7 Monate.[3.3i] für on-shore Anlagen. Bei off-shore Anlagen ist die Energierücklaufzeit naturgemäß höher und beträgt zwischen 7-9 Monate. [https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Recycling von alten Anlagen

Fraunhofer IWES windenergie report deutschland 2013: „Special Report Recycling von Windenergieanlagen“:
http://windmonitor.iwes.fraunhofer.de/img/SR_2013_Recycling_von_Windenergieanlagen.pdf
Bis auf die Rotorblätter ist bei allen Bestandteilen einer Windkraftanlage eine stoffliche Verwertung problemlos möglich.
Bei den Rotorblättern erfolgt derzeit eine thermische Verwertung. Es gibt jedoch bereits verschiedene Projekt zur stofflichen Verwertung der Rotorblätter.

http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/2014-Kurzanalyse-VDI-ZRE-09-Ressourceneffizienz-Windenergieanlagen.pdf]
[http://windenergie.ressource-deutschland.de/recycling/hochwertiges-recycling-von-rotorblaettern/

Gesundheitliche Auswirkungen

Von Windkraftgegnern wird immer wieder auf die Gefahr von Infraschall der durch Windkraftanlagen erzeugt wird verwiesen.
Infraschall ist Schall unter der Hörschwelle von 20 Hertz.
Infraschall ist ein Phänomen das sowohl natürliche Ursachen (z.B. Wind, Meeresrauschen) als auch künstliche Ursachen (z.B. Autoverkehr, Kühlschrankkompressor) haben kann.

Die Physikalisch technische Bundesanstalt in Braunschweig hatte vor einem Jahr eine Untersuchung gemacht, in der sie gezeigt hat, dass ein Teil der Probanden von Infraschall belastet wurde. Sie hat weiteren Forschungsbedarf formuliert.

In Deutschland werden die Grenzwerte einer Belastung durch Schall in der Technischen Anleitung Lärm (TA Lärm) geregelt. [3.3l] Die darin festgelegten Grenzwerte müssen auch von Windkraftanlagen eingehalten werden. Eine Messung des Infraschalls ist darin bisher nicht vorgegeben. das ist aber inzwischen eine Forderung. www.windwahn.de ist eine Plattform der Gegner mit sehr viel Information zum Thema.

Auswirkungen auf die Tierwelt

Bei den negativen Auswirkungen auf die Tierwelt stehen Vögel und Fledermäuse im Vordergrund.
Oft werden von Windkraftgegnern die Windkraftanlagen auch als Vogelschredder bezeichnet. [3.3f]
Auch wenn bei der staatlichen Vogelschutzwarte Brandenburg versucht wird, die durch Windkraftanlagen getöteten Vögel zu erfassen, gibt es keine verlässlichen Zahlen. [3.3m] Die Ursache dafür ist, dass es keine systematische Erfassung gibt. Für Greifvögel gibt es eine aufschlussreiche Studie des Michael-Otto-Institut über Windkraft und Greifvögel. [3.3n] Diese geht auch auf die Möglichkeiten der Vergrämung von Vögeln ein durch entsprechende Maßnahmen ein.
Bei der Diskussion über die Tötung von Vögeln durch Windkraftanlagen werden auch die Todesfälle durch andere Gefährdungen übersehen. Durch den Straßenverkehr und an Hochspannungsmasten werden in Deutschland jährlich jeweils 5 bis 10 Millionen Vögel getötet.
Ebenso werden die Todesfälle durch andere Energieerzeugungsanlagen nicht gesehen. In einer Metastudie aus den USA wurde aufgezeigt, dass durch Kohlekraftwerke je GWh fast 20mal so viele Vögel getötet werden als durch Windkraftanlagen. [3.3o]

Bei Fledermäusen ist die Datenlage noch schlechter. Dies liegt sicher daran, dass sie hauptsächlich nachtaktiv und klein sind. Auch hier versucht die staatliche Vogelschutzwarte Brandenburg die durch Windkraftanlagen getöteten Fledermäuse zu erfassen. [2.3m] Eine Bedrohung ist bei Fledermäusen jedoch nur bei hochfliegenden Arten gegeben. Zum Beispiel bei den Wanderungen des Großen Abendseglers (Nyctalus Noctula). Bei allen Fledermäusen muss jedoch berücksichtigt werden, dass die größte Bedrohung die Einschränkungen ihres Lebensraumes und ihrer Nahrungsgrundlage durch die moderne Landwirtschaft ist. Auch sind keine Daten verfügbar wie viele Fledermäuse durch den Straßenverkehr und an Hochspannungsmasten getötet werden.

Zukünftige Weiterentwicklung der Windkraftanlagen

Bei der Weiterentwicklung der Windkraftanlagen sind 2 Tendenzen zu beobachten. Zum einen geht die Entwicklung hin zu immer größeren Anlagen, speziell auch für den offshore Bereich. Zum anderen werden Anlagen für schwächere Windverhältnisse entwickelt und auf den Markt gebracht.
Die aktuellen Ausbaupläne sehen sowohl einen verstärkten Ausbau von offshore Anlagen als auch von on-shore Anlagen vor allem in Norden Deutschlands vor.
Offshore Anlagen sind industrielle Großanlagen die nur von Großkonzernen errichtet werden können und große Mengen von Strom an einem Punkt liefert. Diese entsprechen von ihrer strukturellen Bedeutung her heutigen fossilen Großkraftwerken. Sie stehen deshalb im Widerspruch zu einer dezentralen Energieversorgung. Für den Transport des erzeugten Stromes ist ein weiterer Ausbau der Übertragungsnetze erforderlich. Offshore Anlagen sind außerdem die mit Abstand teuerste Art von erneuerbaren Energien. Deshalb wird der weitere Ausbau dieser Anlagen nach hinten gestellt.

Der weitere Ausbau von onshore ist derzeit vor allen im Norden geplant. Dies steht im Widerspruch zu einer dezentralen Energieversorgung und es verleitet durch lukrative Vergütungsgarantien zum Ausbau von Übertragungsnetzen, um erzeugten Strom vielleicht in den Süden zu transportieren an Stelle des Aufbaus einer dezentralen Speicherinfrastruktur, die dortige Überschüsse zeitlich verschieben.

Der Ausbau der Übertragungsnetze verursacht erhebliche Kosten und ist, wie man am Widerstand gegen die HGÜ Trassen sieht, der Bevölkerung so gut wie nicht vermittelbar.
Deshalb sollte ein weiterer Ausbau von Windkraftanlagen nur dezentral erfolgen. Diese Art des Ausbaus würde auch Bürgerenergiegenossenschaften Möglichkeiten bieten Bürgerwindräder zu errichten.
Aber auch der dezentrale Ausbau von Windkraftanlagen sollte nur mit entsprechender Bürgerbeteiligung erfolgen. Dies wird zu einer Reduzierung des zukünftigen Ausbaus führen.
Insgesamt sehen wir deshalb für das Jahr 2050 eine Erzeugungskapazität von 200 TWh durch Windkraftanlagen.
Eine Übersicht über aktuelle Forschungsprojekte finden sich hier: http://windenergie.ressource-deutschland.de/

Quellen und weitere Informationen:

[3.3a] https://www.wind-energie.de/sites/default/files/attachments/page/statistiken/20160127-factsheet-status-windenergieausbau-land-jahr-2015.pdf
[3.3b] https://www.wind-energie.de/sites/default/files/attachments/page/statistiken/factsheet-status-offshore-windenergieausbau-jahr-2015.pdf
[3.3c] https://www.wind-energie.de/infocenter/statistiken/deutschland/entwicklung-der-windstromeinspeisung
[3.3d] http://www.gesetze-im-internet.de/eeg_2014/
[3.3f] http://www.windwahn.de/
[3.3g] http://bayrvr.de/2014/11/20/gvbl-192014-gesetz-zur-aenderung-der-bayerischen-bauordnung-baybo-und-des-gesetzes-ueber-die-behoerdliche-organisation-des-bauwesens-des-wohnungswesens-und-der-wasserwirtschaft-orgbauwasg-ver/
[3.3h] http://www.br.de/mediathek/video/sendungen/nachrichten/windkraft-windraeder-bayern-100.html#&time=
[3.3i] http://www.vdi-nachrichten.com/artikel/Mehr-Windkraft-an-Land-rueckt-Oekologie-ins-Blickfeld/54733/1
[3.3j] http://www4.lubw.baden-wuerttemberg.de/servlet/is/229961/
[3.3k] http://www4.lubw.baden-wuerttemberg.de/servlet/is/250786/
[3.3l] http://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_26081998_IG19980826.htm
[3.3m] http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.312579.de
[3.3n] https://bergenhusen.nabu.de/forschung/windkraft-und-greifvoegel/index.html
[3.3o] http://www.sciencedirect.com/science/article/pii/S0960148112000857

https://de.wikipedia.org/wiki/Windkraftanlage
http://www.eurobserv-er.org/category/barometers-in-german/
http://ressourcen.wupperinst.org/downloads/MaRess_AP2_4.pdf
http://www.sciencedirect.com/science/article/pii/S0960148111002254
http://www.inderscience.com/offer.php?id=62496
http://www4.lubw.baden-wuerttemberg.de/servlet/is/223628/windenergie_und_infraschall.pdf?command=downloadContent&filename=windenergie_und_infraschall.pdf

Fraunhofer IPA: „Analytische Untersuchung zur Ressourceneffizienz“, April 2015
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf

http://windenergie.ressource-deutschland.de/
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000004260/Nexus_Ressourceneffizienz.pdf
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 50ff
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

4.1.6 Stromerzeugung mit Photovoltaikanlagen

PV Anlagen nutzen den photoelektrischen Effekt zur direkten Umwandlung von Licht in elektrische Energie. Die ersten Einsätze erfolgten ab Ende der 1950iger Jahre bei Satelliten – und deren PV-Zellen funktionieren noch heute.

Während Solarzellen ursprünglich aus monokristallinem Silizium gefertigt wurden sind inzwischen auch polykristalline bzw. amorphe Solarzellen verfügbar. Auch konnten die Wirkungsgrade deutlich gesteigert werden. Inzwischen sind Wirkungsgrade von bis zu 26 Prozent bei kommerziellen Solarzellen üblich. In Entwicklungslaboren wird bereits an Solarzellen mit Wirkungsgraden von über 40 Prozent gearbeitet. [3.4a]

Dadurch, dass PV Anlagen von der Sonneneinstrahlung abhängig sind können sie nicht kontinuierlich Strom produzieren. Die Bundesnetzagentur rechnet für PV Anlagen mit einer gesicherten Leistung von 0 Prozent. Dies wird damit begründet, dass PV Anlagen in der Nacht keinen Strom produzieren können. Welche Logik steckt dahinter? Was hat dies mit der Realität zu tun? Auch Windräder haben Stillstandszeiten. Die gesicherte Leistung kann in Kombination mit Akkuspeichern ohne weiteres mit 15% angesetzt werden. Dieser Umstand wird von Kritikern gerne angeführt um die Untauglichkeit der Stromerzeugung durch PV Anlagen zu postulieren. [3.4b] Oft wird hierbei auch mit dem Begriff „Flatterstrom“ gezielt Gegnerschaft erzeugt. Für die Sicherung einer kontinuierlichen Stromversorgung ist deshalb eine Kombination mit
entsprechenden Speichertechnologien erforderlich.

In Deutschland waren Ende 2015 PV Anlagen mit einer Nennleistung von 39.7 MW installiert. [3.4c]
Diese speisten 2015 insgesamt 38.5 GWh Strom ins deutsche Netz ein. [3.4d] Die Verteilung der PV Anlagen in Deutschland ist jedoch nicht gleichmäßig. Da im Süden die Sonneneinstrahlung höher ist, sind diese überwiegend in den südlichen Bundesländern installiert.

Der weitere Ausbau von PV Anlagen ist durch die EEG Novelle 2014 stark abgebremst worden. Besonders der Ausbau von Freiflächenanlagen ist seit Ausschreibungsmodell stark zurückgegangen. Die „genehmigten“ Zubauziele werden nicht erreicht. [3.4e]

Zum Schutz der europäischen Hersteller von Solarmodulen werden auf chinesische Solarmodule Strafzölle erhoben. Dies geschah vor allem auf Betreiben von deutschen Herstellern wegen angeblicher Dumpingpreise. Ergebnis war eine Verteuerung von Solarmodulen im EU-Raum gegenüber dem Weltmarkt, ein Absinken der Rentabilität und letztlich die Pleite des größten Anstifters solcher Ideen., den deutschen Bestandteilen von Solarworld. [3.4f]]

Ökologische Betrachtung

Bei der ökologischen Betrachtung sind drei Faktoren zu berücksichtigen:
1. Flächenverbrauch
2. Rohstoffverbrauch für die PV Module
3. Recycling von alten PV Modulen

Flächenbedarf
Der Flächenbedarf für die Erzeugung von elektrischer Energie durch PV Module wird oft als zu hoch für die Bundesrepublik Deutschland dargestellt. Horrordarstellungen von einem durch PV Module überdachten Deutschland werden verbreitet. Doch wie ist es wirklich?
Die Bundesrepublik Deutschland hat eine Gesamtfläche von 357.375 Quadratkilometern.
In den oben berechneten Szenarien zur Stromerzeugung ergibt sich bei einem Wirkungsgrad von 20% Prozent ein Flächenbedarf von 3.610 Quadratkilometern bzw. 5.502 Quadratkilometern. Ein Wirkungsgrad von 20% erscheint als sehr konservative Abschätzung für das Jahr 2050, da er der bereits heute verfügbaren Technologie entspricht. Es wären also nur 1% bis 1,5% der Fläche Deutschlands für die Stromerzeugung durch PV Module benötigt.
Laut dem Statistischen Bundesamt waren im Jahr 2014 insgesamt 19.205 Quadratkilometer durch Wohn-, Gewerbe- und Betriebsflächen belegt. [3.4d] Dies bedeutet, dass man je nach Szenario 18% bzw. 28% Prozent der bereits durch Gebäude überbauten Fläche benötigt um den gesamten benötigten Strom zu erzeugen.
Nicht berücksichtigt ist dabei der Effekt durch andere Arten der PV Nutzung, wie z.B. PV Module an Gebäudefronten, Solarwege, PV Module an Schallschutzwänden, usw. Dadurch werden die benötigten Dachflächen reduziert. Eine genaue Abschätzung der Reduktion ist aber derzeit nicht möglich.

Umweltbundesamt:

„Entsprechend der UBA-Studie „Energieziel 2050“ wird von einem mittleren Jahresnutzungsgrad von 17% und 1.620 km2 verfügbare Fläche ausgegangen. Dies bedeutet, dass für jedes installierte Kilowatt (kW) an Leistung 5,88 m2 Fläche benötigt werden. Würde man die gesamte Fläche mit Solarmodulen belegen, so stände eine installierte Leistung von 275 Gigawatt (GW) zur Verfügung. Bei den
Flächenangaben handelt es sich um Dach- und Fassadenflächen sowie sonstige Siedlungsflächen wie Parkplatzüberdachungen oder Lärmschutzwände. Die Nutzung von Freiflächen wie Konversionsflächen, Ackerflächen oder Grünland sind hier nicht berücksichtigt. Unter der Annahme von 900 Volllaststunden ergäbe sich ein jährlicher Stromertrag von ca. 248 TWh. Bei dieser solaren Flächenermittlung handelt es sich um eine konservative Potenzialbewertung. Ob dieses Potenzial ausgeschöpft werden kann, hängt von verschiedenen Faktoren wie der Akzeptanz in der Bevölkerung, politischer Weichenstellungen, der Wirtschaftlichkeit der PV-Anlagen und der Systemintegration des Solarstroms ab. Falls die Flächenpotenziale auf Konversionsflächen, Ackerflächen oder Grünland erschlossen werden, können auch noch größere installierte Leistungen von Photovoltaikanlagen in Deutschland realisiert werden.“ [Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 52,

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

„Runder Tisch Energiewende Niedersachsen“ hat eine aktuelle Analyse der Dachflächen in Niedersachsen gemacht. Hochrechnen auf das gesamte Bundesgebiet auf Basis der Bevölkerungsverteilung?! [Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050 – Gutachten – http://www.umwelt.niedersachsen.de/download/106468, April 2016, Seite 20f]

Rohstoffverbrauch für die PV Module
Für 1 GW Leistung:
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 51f
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

PV Module bestehen hauptsächlich aus den folgenden Komponenten:

1. Glasscheiben
Glas ist ein Schmelzprodukt das hauptsächlich aus Quarzsand, Soda und Pottasche besteht. Dies alles sind Rohstoffe, die häufig in der Natur vorkommen bzw. aus häufig vorkommenden Elementen synthetisiert werden. Somit besteht keine Gefahr von Ressourcenengpässen die die Fertigung von PV Modulen einschränken.

2.Alurahmen
Aluminium kommt in der Erdkruste sehr häufig vor. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten.

Aluminium als elementares Metall und Material verfügbar zu machen erfordert zwar einen hohen Energieeinsatz. Aber einmal produziert kann es sehr einfach recycelt werden und dient in Form von Lagerware als Barren sogar als indirekter Energiespeicher für Überschussstrom.

3. Solarzellen
Solarzellen werden aus Silizium gefertigt. (Silizium ist das zweithäufigste Element der Erdkruste. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten).

4. Kupferverbindungen
Kupfer kommt in der Erdkruste sehr häufig vor. Somit besteht keine Gefahr von Ressourcenengpässen, die die Fertigung von PV Modulen einschränken.

5.Kunststoffdichtungen bzw. Folien
Kunststoffdichtungen bzw. Folien werden heute aus Erdöl gewonnen.

Die Herstellung der Hauptkomponenten eines PV Moduls ist relativ energieintensiv. Jedoch wird im Laufe der Lebensdauer der PV Module deutlich mehr elektrische Energie erzeugt. Die Energierücklaufzeit, also die Zeit in der die für die Herstellung verbrauchte Energie wiedergewonnen ist beträgt heute ca. 1 Jahr. Quelle?

Recycling von alten PV Modulen
Beim Recycling von alten PV Modulen können heute über 90 Prozent der verwendeten Materialien wiedergewonnen werden und erneut in den Produktionsprozess eingebracht werden.
Das Recycling von Glas, Alu, Silizium und Kupfer ist eine bewährte Technik und auch von der Ökobilanz ein her gesehen sehr positiv.
Heute existiert keine bewährte Technik für das Recycling der Kunststoffdichtungen bzw. Folien die ja fest mit den Glasscheiben bzw. Solarzellen laminiert sind.

Was wir noch genauer betrachten sollten:

– Wieviel Rohstoff in g ist in einem Modul enthalten?
– Wie viele Module brauchen wir für die solare Stromerzeugung in Deutschland?
– Groß sind jeweils die weltweiten Rohstoffreserven?
Dann ist es nicht nur eine pauschale Aussage, sondern berechnet, dass ausreichend Rohstoffreserven vorhanden sind.

Die gleiche Rohstoff-Betrachtung dann für die Windkraftanlagen.

Das ist auch wichtig, weil insbesondere bei Windkraftanlagen manchmal eine Rohstoffknappheit ins Feld geführt wird.

Zukünftige Weiterentwicklung der PV Nutzung

Für die Zukunft ist eine weitere Zunahme der PV Nutzung zu erwarten, obwohl laut aktuellen EEG der weitere geförderte Zubau eingeschränkt wurde. [3.4e]

Durch weitere Verbesserungen der Produktionstechnik sind auch in Zukunft Kostenreduktionen bei der Herstellung von PV Modululen zu erwarten. Kurzfristig von Bedeutung ist hierbei der Ausgang des Anti-Dumping-Verfahren gegen China. [3.4f] Diese künstliche Verteuerung wird jedoch langfristig nicht durchzuhalten sein. [3.4g]
Langfristig werden auch PV Module, die nicht auf Silizium basieren, auf den Markt kommen.
PV Module auf Basis von Galliumarsenid bzw. Galliumindiumphosphid / Galliumindiumarsenid bieten einen deutlich höheren Wirkungsgrad als siliziumbasierte PV Module. Momentan sind sie jedoch noch zu teuer oder erst als Labormuster verfügbar.
Auch organische PV Module und Perowskit-Module bilden momentan ein erfolgversprechendes Forschungsgebiet.[3.4h]
Langfristig ist jedoch mit der Marktreife entsprechender Module zu rechnen.
Für die Aufstellung von PV Anlagen bietet sich, wie bereits oben erwähnt, ein breites Zukunftspotential. Zum Beispiel Solarwege. [3.4i] [3.4j]. Dies würde zu einer Reduzierung der oben angeführten Fläche führen.
Auch die Überdachung von Verkehrswegen bietet eine interessante Option, da im Nebeneffekt Schneeräumung im Winter und Fahrzeugklimatisierung im Sommer deutlich geringer ausfallen. ICEs, die sich nicht in der prallen Sonne auf 50 °C und mehr aufheizen, sondern weitgehend im Schatten fahren, erleiden auch keinen Ausfall der Klimaanlagen mehr.
PV Anlagen stellen insgesamt betrachtet die umweltverträglichste Form von erneuerbaren Energien da. Die Akzeptanz in der Bevölkerung ist ebenfalls sehr hoch. Deshalb sollten sie auch die Hauptlast der zukünftigen Stromversorgung tragen.

Übersicht Rohstoffverfügbarkeit weltweit:
B.U.N.D. Hintergrundpapier: „Ressourcenschutz ist mehr als Rohstoffeffizienz“, Juli 2015 http://www.bund.net/pdf/ressourcenschutz

Powershift: Rohsto¬ffe für die „grüne“ Wirtschaft, 2011
http://power-shift.de/wordpress/wp-content/uploads/2011/08/PowerShift-ForumUE-StudieRohstoffe-Gr%C3%BCneWirtschaft-2011web_klein.pdf

Quellen und weitere Informationen:

[3.4a] http://photovoltaik-vision.de/05-2013/forschung-vierfach-stapelsolarzelle-mit-436-prozent-wirkungsgrad/
[3.4b] http://www.eike-klima-energie.eu/
[3.4c] https://www.energy-charts.de/power_inst_de.htm
[3.4d] http://www.statistischesbundesamt.de/
[3.4e] http://www.gesetze-im-internet.de/eeg_2014/
[3.4f] http://photovoltaik-vision.de/08-2013/preisdumping-eu-einigt-sich-endgultig-mit-china/
[3.4g] http://safe-eu.org/2016/04/19/pm-solarmodule-koennten-hierzulande-20-preiswerter-sein/?utm_source=newsletter&utm_medium=email&utm_campaign=PHOTON+Newsletter+-+Deutsche+Ausgabe+vom+20.4.2016+&newsletter=PHOTON+Newsletter+-+Deutsche+Ausgabe+vom+20.4.2016+
[3.4h http://www.iwr.de/news.php?e=x0616x&id=30643
[3.4i] hhttps://www.indiegogo.com/projects/solarlayer-every-surface-is-a-solar-panel#/
[3.4j] http://www.mein-elektroauto.com/2016/02/frankreich-will-1-000-kilometer-strassen-mit-solarzellen-ausstatten/19828/

https://de.wikipedia.org/wiki/Photovoltaik
http://www.eurobserv-er.org/category/barometers-in-german/
http://www.sma.de/unternehmen/pv-leistung-in-deutschland.html
http://www.oeko-energie.de/produkte/solarstrom-photovoltaik/solarmodule/index.php#04a2089a240b63601
http://www.bvmw.de/politik/energie.html
https://de.wikipedia.org/wiki/Solarmodul
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 52
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf, Abschätzung ohne Freiflächen

4.1.7 Vergleich Photovoltaik und Windkraft

Vergleiche:

Rohstoffeinsatz 1 MW Photovoltaik/1 MW Windkraft (onshore)
kurzer Hinweis auf höheren Rohstoffeinsatz für offshore durch Umspannwerke auf See und an Land und seeseitige zusätzlich Stromkabel/ höherer energetischer Aufwand da Materialien und Personal aufs Meer geschafft werden müssen

Bewertung/Schlussfolgerungen für die (unsere) Verteilung der Stromerzeugungskapazität auf Photovoltaik und Windkraft

Zukünftige Stromerzeugung in Deutschland

Im Jahr 2050 ergibt sich ein Gesamtbedarf an elektrischer Energie von 1300 TWh.
Diese Energie soll zu 100% aus erneuerbaren Quellen stammen.
Als Quellen dafür kommen Wasserkraft, Biogas, Biomasse, Windkraftanlagen und Photovoltaikanlagen (PV Anlagen) in Betracht.
Technologien, die derzeit in Deutschland ihre Einsatzfähigkeit bzw. Marktreife noch nicht bewiesen haben werden nicht berücksichtigt. Dies ist zwar ein extrem konservativer Ansatz, jedoch befindet man sich damit auf der sicheren Seite und macht sich nicht von Entwicklungsfortschritten abhängig, die möglicherweise nicht eintreten.
Wie weiter oben beschrieben werden für Wasserkraft, Biogas, Biomasse die folgenden Erzeugungskapazitäten angenommen.
Wasserkraft: 22,7 TWh
Biogas: 5,5 TWh
Biomasse: 2 TWh
Summe: 30,2 TWh
Somit müssen noch 1.270 TWh durch PV- und Windkraftanlagen erzeugt werden.
Bei beiden ist jedoch auf Grund der Fluktuation bei der Erzeugung eine Speicherung von Strom notwendig.
Die wichtigste Grundsatzentscheidung für die zukünftige Stromversorgung ist deshalb welchen Anteil PV- und Windkraftanlagen an der Produktion haben sollen.
Neben technischen und ökonomischen Faktoren spielen dabei auch sog. soft skills wie z.B. Akzeptanz in der Bevölkerung eine Rolle.
Technisch gesehen handelt es sich sowohl bei Windkraftanlagen als auch bei PV Anlagen um Systeme die ihre Einsatzreife bereits seit längerer Zeit unter Beweis gestellt haben. Zudem gibt es bei beiden noch Entwicklungspotential, sowohl bei der Technologie als auch bei der Optimierung in der Produktion.

Für eine Beurteilung zur Priorisierung der Erzeugungssysteme PV- und Windkraftanlagen dient die folgende Tabelle. Bei der Bewertung wird zwischen PV Anlagen, offshore Windkraftanlagen und onshore Windkraftanlagen unterschieden.

PV Anlagen on shore Windkraftanlagen off shore Windkraftanlagen
Verfügbarkeit von
Rohstoffen problemlos problemlos problemlos
Recycling problemlos problemlos problemlos
Gesellschaftliche
Akzeptanz hoch umstritten umstritten
Flächenbedarf hoch – gering gering
Energetische
Amortisation schnell schnell schnell
Ökologische
Auswirkungen gering mittel hoch
Kosten mittel mittel hoch
Gesundheitliche
Auswirkungen keine unbestimmt unbestimmt

Bei Windkraftanlagen ist bei einer ökonomischen Betrachtung zwischen on shore und off shore Anlagen zu unterscheiden. Off shore Windkraftanlagen produzieren derzeit den teuersten erneuerbaren Energiestrom, während on shore kostengünstig Strom produziert wird.
PV Anlagen produzieren ihren Strom ebenfalls kostengünstig.
Bei den soft skills gibt es deutliche Unterschiede zwischen PV- und Windkraftanlagen.
Der Protest gegen Windkraftanlagen nimmt immer mehr zu. Oft wird dabei auch die Energiewende insgesamt auch in Frage gestellt.
Dagegen gibt es bei der Errichtung von PV Anlagen nur sehr selten Proteste.
Daraus zu folgern, man sollte nur noch PV Anlagen bauen wäre jedoch nicht zielführend.
Jedoch kann man daraus folgern, dass für eine breite Akzeptanz der Energiewende verstärkt auf den Ausbau von PV Anlagen gesetzt werden soll. Dies wird auch von uns gefordert und deshalb wird bei der Stromproduktion im Jahr 2050 von 1.000 TWh Strom aus PV Anlagen und 270 TWh Strom aus Windkraftanlagen ausgegangen.

4.1.8 Verfügbarkeit von Rohstoffen

Die weltweiten Bauxitvorkommen werden auf 55 bis 75 Milliarden Tonnen geschätzt. Im Jahr 2015 wurden 58,3 Millionen Tonnen Aluminium daraus geschmolzen. [http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2016-alumi.pdf]

Silizium ist das zweithäufigsten Elemente der Erdkruste [https://de.wikipedia.org/wiki/Liste_der_H%C3%A4ufigkeiten_chemischer_Elemente#H.C3.A4ufigkeiten_auf_der_Erde]. Ein Mangel an Rohmaterial ist deshalb nicht zu befürchten.

Die weltweiten Kupfervorkommen werden auf 5,6 Milliarden Tonnen geschätzt. Im Jahr 2015 wurden 18,7 Millionen Tonnen Kupfer abgebaut. [http://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2016-coppe.pdf]

Die weltweiten Eisenvorkommen werden auf 230 Milliarden Tonnen geschätzt. [http://minerals.usgs.gov/minerals/pubs/commodity/iron_ore/mcs-2016-feore.pdf]

Die weltweiten Vorkommen an Seltenen Erden werden auf 130 Millionen Tonnen geschätzt. Im Jahr 2015 betrug die Produktion 124.000 Tonnen. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2016-raree.pdf

Beton besteht aus Gesteinskörnung; Sand und Kies und Zement als Bindemittel.
Durch die Zugabe von Wasser reagiert der Zement und es entsteht ein festes Baumaterial.
Jährlich werden in Deutschland 250 Millionen Tonnen Beton verbaut. Die Menge an Betonabfällen beträgt 130 Millionen Tonnen. http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
In der Regel erfolgt das Recycling durch Schreddern des Betonabfalls. Jedoch gibt es bereits Projekte den Beton wieder in Gesteinskörnung und Zementmasse zerlegen. Damit sind Recyclingquoten von 80% möglich. http://www.fraunhofer.de/de/presse/presseinformationen/2012/oktober/blitz-schlag-ein.html

Der damit hergestellte RC-Beton entspricht den entsprechenden Normen http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
Auch für den in der Herstellung sehr energieintensiven Zement wird nach Ersatzstoffen gesucht. http://www.ressource-deutschland.de/fileadmin/user_upload/downloads/kurzanalysen/Kurzanalyse_Nr_8_Hochwertiges_Recycling_im_Baubereich.pdf
Jedoch ist bei den Rohstoffen für die Zementherstellung kein Mangel zu erwarten. http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2016-cemen.pdf
All diese Verbesserungen bei der Betonherstellung kommen auch den Betonbestandteilen von Windkraftanlagen zu Gute.

Für den Bau von Windkraftanlagen off shore werden die folgenden Materialien benötigt:
▸ ca. 101.000 t Beton,
▸ 144.000 t Eisen und Stahl,
▸ darunter mindestens 1.800 t Nickel, Chrom, Molybdän und Mangan
▸ 11.000 t größtenteils glasfaser- oder carbonfaserverstärkte Kunststoffe,
▸ 3.000 t Kupfer und
▸ bis zu 200 t an Seltenen Erden.
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf
Laut derselben Quelle werden für Anlagen an Land ähnliche Rohstoffmengen benötigt. Jedoch werden geringe Stahlmengen und dafür höhere Betonmengen benötigt.
Diese Studie geht davon aus dass bei den Generatoren Synchrongeneratoren mit Permanenterregung eingesetzt werden, die Seltene Erden benötigen.
In https://epub.wupperinst.org/frontdoor/index/index/docId/5883 werden jedoch auch Szenarien vorgestellt die von einem erheblichen Anteil von Generatoren ohne Seltene Erden ausgehen.

Kritische Rohstoffe beim Windenergieausbau

Fraunhofer IWES: windenergie report Deutschland 2014; 2015
http://windmonitor.iwes.fraunhofer.de/opencms/export/sites/windmonitor/img/Windenergie_Report_2014.pdf, Seite 70ff; bezieht sich auf die Studie des Wuppertal-Institutes

Zusammenfassend kann man feststellen, dass der Bau von Windkraftanlagen nicht durch Ressourcenengpässe begrenzt wird.

Quellen und weitere Informationen:

Übersicht Rohstoffverfügbarkeit weltweit:
B.U.N.D. Hintergrundpapier: „Ressourcenschutz ist mehr als Rohstoffeffizienz“, Juli 2015 http://www.bund.net/pdf/ressourcenschutz

Powershift: Rohsto¬ffe für die „grüne“ Wirtschaft, 2011
http://power-shift.de/wordpress/wp-content/uploads/2011/08/PowerShift-ForumUE-StudieRohstoffe-Gr%C3%BCneWirtschaft-2011web_klein.pdf

4.1.9 Der Anteil von Sonne und Wind an der zukünftigen Stromerzeugung

Für den Ausbau der Stromerzeugung durch erneuerbare Energien wurde ein Simulationsmodell erstellt. Dieses ermittelt die für Windkraftanlagen und PV Anlagen notwendigen Ausbauziele an Erzeugungsanlagen sowie den Bedarf an Speichermöglichkeiten, um Dunkelheit und Flauten zu überbrücken und damit eine kontinuierliche und bedarfsgerechte Stromversorgung zu gewährleisten.

Die Sonneneinstrahlung in Deutschland lässt sich relativ einfach mathematisch bestimmen. Die Solarkonstante und die Breitengrade von Deutschland sind bekannt. Diese mathematische Methode berücksichtigt jedoch nicht die meteorologischen Phänomene (z.B. Wolken, Nebel, usw.) und liefert systematisch zu hohe Werte.
Deshalb wurde ein anderer Ansatz zur Bestimmung der Sonneneinstrahlung gewählt. Mit Hilfe eines Solarrechners, der meteorologische Phänomene berücksichtigt, also die effektive Sonneneinstrahlung liefert, wird ein Durchschnittsertrag von PV Anlagen ermittelt, der auf mehreren Messpunkten in Deutschland beruht.
Bei den Berechnungen des Flächenbedarfs wird von einem Wirkungsgrad von 16% ausgegangen. Dies entspricht dem heutigen Standard. Daneben wird auch noch der Flächenbedarf bei einem Wirkungsgrad von 20% bzw. 25% berechnet. Diese Wirkungsgrade erscheinen für das Jahr 2050 durchaus möglich, da bereits heute in den Entwicklungslaboren Wirkungsgrade über 40% erreicht werden.
Eine Erhöhung des Wirkungsgrades, die auf Grund der technischen Weiterentwicklung zu erwarten ist, wird den Flächenbedarf reduzieren.
Der benötigte Speicherbedarf bei den einzelnen Szenarien ist jedoch unabhängig vom Wirkungsgrad der verwendeten Solarzellen.
In der folgenden Grafik sind die durchschnittlichen Erträge pro Monat aufgeführt.

Diese Werte bilden die Grundlage für alle folgenden Berechnungen der Stromerzeugung durch PV Module.

Bei der Stromerzeugung durch Windkraftanlagen lässt sich kein mathematisches Modell verwenden. Deshalb wurde die durch Windkraftanlagen im Jahr 2013 erzeugte Energie als Basis für die Berechnungen verwendet.
In der folgenden Grafik sind die Erträge pro Monat aufgeführt.

Diese Werte bilden die Grundlage für alle folgenden Berechnungen der Stromerzeugung durch Windkraftanlagen.

Stromerzeugung nach dem derzeitig gültigen EEG (Erneuerbaren Energiegesetz)

Nach dem derzeit gültigen EEG ist bei PV Anlagen eine weiterer, geförderter Ausbau von 2.500 MW Peak Leistung pro Jahr geplant. Dies bedeutet gegenüber den tatsächlichen Neuinstallationen der letzten Jahre eine deutliche Reduzierung.
Wenn sich an den gesetzlichen Grundlagen nichts ändert und der Ausbau planmäßig erfolgt dann würde dies bis 2050 einen Zubau von 87.500 MW bedeuten. Wenn alle heute existierenden PV Anlagen noch existieren bzw. ersetzt werden würde dies einen Gesamtbestand von 125.800 MW PV Leistung ergeben.

Damit würde sich die im folgenden Bild dargestellte Strommenge erzeugen lassen.

Nach dem derzeit gültigen EEG ist auch bei Windkraftanlagen ein weiterer geförderter Ausbau von 2.500 MW Nennleistung pro Jahr geplant.
Wenn sich an den gesetzlichen Grundlagen nichts ändert und der Ausbau planmäßig erfolgt dann würde dies bis 2050 einen Zubau von 87.500 MW bedeuten. Wenn alle heute existierenden Windkraftanlagen noch existieren bzw. ersetzt werden würde dies einen Gesamtbestand von 132.100 MW Leistung durch Windkraftanlagen ergeben.

Damit würde sich die im folgenden Bild dargestellte Strommenge erzeugen lassen.

Wie man in obigen Bildern sieht ist damit im Jahresdurchschnitt nur rund die Hälfte des derzeitigen Strombedarfs von 614 TWh gedeckt.
Für die PV Anlagen würde bei einem angenommen durchschnittlichen Wirkungsgrad von 16% eine Fläche von 782 Quadratkilometern benötigt um die EEG Zielvorgaben für den Ausbau zu erreichen. Bei einem für die Zukunft angenommen durchschnittlichen Wirkungsgrad von 20% bzw. 25% würde sich der Flächenbedarf auf 626 bzw. 500 Quadratkilometern reduzieren.
Diese Zahlen erscheinen auf den ersten Blick zwar sehr hoch, wenn man jedoch die Gesamtfläche der Bundesrepublik, 357.375 Quadratkilometer, dazu in Relation setzt, ist der Bedarf äußerst gering.

4.1.10 Die Landkarte der Stromerzeugung

Im Teilprojekt „„C/sells: Großflächiges Schaufenster im Solarbogen Süddeutschland“ des Bundesprojektes „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ wird genau diese Fragestellung untersucht:
„Das Schaufenster „C/sells“ überspannt im Süden Deutschlands die Bundesländer Baden-Württemberg, Bayern und Hessen und hat den Schwerpunkt „Solarenergie“… Kern des Schaufensters ist die Demonstration eines zellulär strukturierten Energiesystems, in dem regionale Zellen im überregionalen Verbund miteinander agieren. Die Größe der Zellen ist dabei sehr unterschiedlich. So können einzelne Liegenschaften oder ganze Verteilnetze solche Zellen bilden. Jede Zelle versorgt dabei subsidiär zunächst sich selbst, indem Energieerzeugung und Last möglichst direkt vor Ort ausgeglichen werden. Die verbleibenden Energiebilanzen werden dann mit anderen Zellen ausgetauscht, um so das Energiesystem insgesamt zu optimieren. Durch den Zellverbund entsteht dadurch eine effiziente und robuste Energieinfrastruktur.“ http://www.bmwi.de/DE/Themen/Energie/Netze-und-Netzausbau/sinteg.html)

4.2 Zukünftige Wärmeerzeugung in Deutschland

4.2.1 Tiefengeothermie

Der mögliche Beitrag der tiefen Geothermie zu einer nachhaltigen Energieversorgung wurde umfassend für einen Sachstandsbericht des Büros für Technikfolgen-Abschätzung (TAB) beim Deutschen Bundestag untersucht. Unter Berücksichtigung ökologischer, raumordnerischer und technischer Restriktionen wurde daraus das bis 2050 erschließbare technisch-ökologische Potenzial der geothermischen Stromerzeugung in Deutschland bestimmt. Im Jahr 2050 könnte demnach eine installierte Netto-Leistung geothermischer Anlagen von 6,4 Gigawatt elektrisch realisiert werden. Damit könnten ca. 50 TWh/a grundlastfähiger Strom erzeugt werden. Dieses Potenzial ist in Deutschland umweltverträglich erschließbar, positive Umwelteffekte lassen sich ebenfalls mit geothermischer Wärmeversorgung erzielen. [Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 53 https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf]

Rentabel unter volkswirtschaftlichen Gesichtspunkten ist diese Technologie allerdings bei weitem nicht.

Der Wärmebedarf in Deutschland lässt sich aus den in Kapitel 2.4 gemachten Ansätzen wie folgt bestimmen:
Private Haushalte: 115,5 TWh
Wirtschaft und Verwaltung: 444,6 TWh
Summe: 560,1 TWh

Beim Wärmebereich muss man zwischen Niedertemperaturbereich und Hochtemperaturbereich unterscheiden.
Energie im Niedertemperaturbereich lässt sich relativ leicht, zum Beispiel durch Solarthermie gewinnen.
[Im Hochtemperaturbereich, zum Beispiel bei der Stahlproduktion ist dies nur sehr eingeschränkt und aufwändig möglich (erfolgreich funktionierende Versuchsanlage in den frz. Pyrenäen). Deshalb muss dieser Temperaturbereich durch Strom bereitgestellt werden.] Konzept für Aluminiumgießerei: Solarturm Jülich: [http://www.kba-metalprint.com/fileadmin/user_upload/MetalPrint/Fachbeitraege/Dynamische_Hochtemperatur-Speicherung_0713.pdf]

4.2.2 Oberflächennahe Geothermie

(Wärmepumpen)

4.2.3 Solarthermie

4.2..4 Strombasierte Wärmeerzeugung

Literaturverweise:

4 Die Erzeugung der Energie von morgen

[4a]
Bundesministerium für Wirtschaft und Energie: Entwicklung der erneuerbaren Energien
in Deutschland im Jahr 2015, Stand Februar 2016, Seite 11 und 7
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12

[4b]
Bundesministerium für Wirtschaft und Energie: Entwicklung der erneuerbaren Energien
in Deutschland im Jahr 2015, Stand Februar 2016, Seite 22 und 8
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/entwicklung_der_erneuerbaren_energien_in_deutschland_im_jahr_2015.pdf?__blob=publicationFile&v=12

4.1.2 Stromerzeugung mit Klär- Deponie- und Grubengas

[4.1.2a]
Wupperverband:
http://www.wupperverband.de/internet/web.nsf/id/pa_de_klaergas.html und http://www.mwm.net/mwm-kwk-bhkw/mwm-kompetenzen/gas-loesungen/klaergas/ ]

[4.1.2b]
Wikipedia: Deponiegas
https://de.wikipedia.org/wiki/Deponiegas]

[4.1.2c]
Caterpillar Energy Solutions GmbH: Dezentrale Stromerzeugung mit Deponiegas
http://www.mwm.net/mwm-kwk-bhkw/mwm-kompetenzen/gas-loesungen/deponiegas/

[4.1.2d]
Evonik Industries: Energie aus Grubengas
https://www.steag-newenergies.com/index.php?id=455&type=0&jumpurl=fileadmin%2Fuser_upload%2Fsteag-newenergies.com%2Fprodukte_leistungen%2Fgrubengas%2FDE_Evonik_Grubengasbroschuere.pdf, Seite 4

[4.1.2e]
Foliensatz zur Energie-Info „Erneuerbare Energien und das EEG (2016)“
https://www.bdew.de/internet.nsf/id/20160222-energie-info-erneuerbare-energien-und-das-eeg-zahlen-fakten-grafiken-2016-de?open&ccm=500010045, Folie 2

[4.1.2f]
Interessenverband Grubengas e. V.: NRW – Grubengasverwertungsdaten
http://www.grubengas.de/german/verwertung_g.htm

4.1.4 Stromerzeugung mit Windkraftanlagen auf See

[4.1.4a]
siehe zum Beispiel
Bundesministerium für Wirtschaft und Energie: Broschüre „Offshore-Windenergie“
http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/bmwi_de/offshore-windenergie.pdf?__blob=publicationFile&v=2

[4.1.4b]
Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG 2014), § 49 bis 51
https://www.gesetze-im-internet.de/bundesrecht/eeg_2014/gesamt.pdf
und
Entwurf eines Gesetzes zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien (Erneuerbare-Energien-Gesetz – EEG 2016), § 49 http://bmwi.de/BMWi/Redaktion/PDF/G/gesetzentwurf-ausschreibungen-erneuerbare-energien-aenderungen-eeg-2016,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

[4.1.4c]
Status des offshore-Windenergieausbaus in Deutschland, Stand 31.12.2015, Seite 3
http://www.windguard.de/_Resources/Persistent/6863a8d0ae295aaa0e5e72419395edaf220dc1d0/Factsheet-Status-Offshore-Windenergieausbau-Jahr-2015.pdf

[4.1.4d]
Entwurf eines Gesetzes zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien (Erneuerbare-Energien-Gesetz – EEG 2016), § 4
http://bmwi.de/BMWi/Redaktion/PDF/G/gesetzentwurf-ausschreibungen-erneuerbare-energien-aenderungen-eeg-2016,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 4

Das Orangebuch der Energiepiraten – meine Sicht – Teil 4

3. Die Welt einer nachhaltigen Energieversorgung

Das Leben ist leiser geworden. Fahrräder und Autos surren durch die Straßen. Die Sonne wärmt dunkle Dächer und spiegelt sich schwach in glänzenden Fassaden. Die Rotoren der Windkraftanlagen drehen sich in der Ferne behäbig im lauen Wind. Eine Vision? Nein, die nachhaltige Zukunft.

In die Dächer von Wohnhäusern, öffentlichen Gebäuden und Industriegebäuden sind und Photovoltaikmodule eingelassen, teilweise auch Sonnenkollektoren, große Häuserwände sind mit stromerzeugenden Folien überzogen. [3a] Alleinstehende Gehöfte und Häuser erzeugen mit Solarthermie, Photovoltaik und Wärmepumpe genügend Wärme und Strom zur Eigenversorgung, Strom- und Wärmespeicher helfen über sonnenschwache Tage hinweg. Wohnquartiere und Wohnsiedlungen werden über gemeinschaftliche Strom- und Wärmespeicher versorgt, einige erzeugen sogar Stromüberschüsse, die in das öffentliche Netz eingespeist werden. [3b] Die Wärme wird lokal durch Großflächen-Solarthermie, Biomassenutzung, in einigen Regionen auch durch Tiefen-Geothermie erzeugt. Abwasser- und Überschusswärme von Industrieunternehmen wird ebenso genutzt wie überschüssiger erneuerbarer Strom im „Power to Heat“-Verfahren. [3c] Nah- und Fernwärmenetze leiten die mit erneuerbaren Technologien erzeugte Wärme zu Verbrauchern und in Speicher.

Auch kleinere Gewerbe und Industriebetriebe versorgen sich energetisch selbst, größere sind für die Stromversorgung an Wind- oder Solarparks und das Fernwärmenetz angeschlossen. Wer sein Elektroauto nicht zu Hause selbst aufladen kann [3d], fährt zu Ladestationen auf öffentlichen Parkplätzen, in Tiefgaragen [3e], in Einkaufszentren [3f] oder lädt Strom während Reisen auf Autobahnrastplätzen [3g]. Die Batterien von Bussen, LKWs und Flottenfahrzeugen werden über Nacht an ihren Standorten aufgeladen, der öffentliche Schienenverkehr mit Strom von Wind- oder Solarparks aus Batteriegroßspeichern gespeist.

Lokale Stromerzeugung, lokaler und regionaler Stromverbrauch gleichen sich weitgehend über die Verteilnetze und an den Verknüpfungspunkten gleichermaßen wie in Gebäuden beim Endverbraucher installierten Batteriespeicher aus, unterstützt von weiteren Batteriespeichern zur Spannungsstabilisierung und dem Ausgleich von Erzeugungs- und Lastspitzen an den Netzknoten zwischen Mittel und Hochspannung. Infrastrukturstromspeicher [3h] als Teil der Batteriespeicher sichern außerdem bei einer Netzstörung die Stromversorgung von lokalen technischen Anlagen der öffentlichen Versorgung. Dazu gehören zum Beispiel die öffentliche Wasser- und Abwasserversorgung, die Gasversorgung und die Telekommunikation.
Regionale Netze sind über die Mittelspannungsebene miteinander verbunden und ergänzen gegenseitig ihren Stromhaushalt oder werden aus saisonalen Stromspeichern unterstützt. Der Strom aus offshore Windparks und großen onshore Windparks wird regional verbraucht oder kann über das Hochspannungsnetz zu anderen Regionen geleitet werden. Wird mehr erneuerbarer Strom erzeugt, als gerade verbraucht, befüllt dieser Batteriespeicheranlagen mit hoher Kapazität, kann gegebenenfalls Druckluft erzeugen, die in großen Kavernen gespeichert wird, über „Power to Gas“-Anlagen synthetisches Methan in das Gasnetz einspeisen oder Pumpspeicherseen füllen: Ein sinnvoller Vorrat für die Zeiten, wenn über viele Tage hinweg, zu wenig Wind weht und die Sonne nicht scheint.

Schiffe und Flugzeuge werden mit flüssigem erneuerbaren Kraftstoff betankt, Küstenschiffe fahren und kleinere Flugzeuge fliegen elektrisch angetrieben, transkontinentale Güterbahnsysteme übernehmen den Großteil der Containerfrachten und der öffentliche Personenverkehr fährt komplett elektrisch, auf Nebenbahnen, im regionalen Nahbereich als Straßenbahn sogar batteriegetrieben.

3.1 Wärme und Strom in der Zukunft

Die Energieversorgung der Zukunft beruht auf der Nutzung von Wärme und erneuerbar erzeugtem Strom. Insbesondere durch einen strombasierten Verkehr wird sich der Strombedarf deutlich erhöhen. Im Jahr 2014 wurden in Deutschland nur 21% der Endenergie als Strom verbraucht, dagegen mehr als die Hälfte in Form von Wärme. [3.1a] Wie wird dieses Verhältnis in der Zukunft sein? Schauen wir uns dazu noch einmal die einzelnen Verbrauchsbereiche an:

Für den Verkehrsbereich wurde in Kapitel 2.2 und 2.5 der Strombedarf auf 244 TWh für die Mobilität in Deutschland und auf 261 TWh für den Anteil am internationalen See- und Flugverkehr abgeschätzt. Dabei wurde davon ausgegangen, dass der Anteil von flüssigen Kraftstoffen für sonstige Kraftfahrzeuge (Spezialmaschinen) und den Flug- und Schiffsverkehr durch Strom im Power-to-Liquid-Verfahren hergestellt wird. Der nutzbare Wärmeanteil ist hier sehr gering und wird in der Gesamtbetrachtung vernachlässigt.

Im Kapitel 2.3 wurde der zukünftige jährliche Energiebedarf für private Haushalte zu 210 TWh abgeschätzt. Legt man wie das Bundesumweltamt einen Wärmeanteil von 53,8 Prozent zugrunde [3.1b], errechnet sich daraus ein Stromanteil von 97 TWh und ein Wärmeanteil von 113 TWh.

In der Industrie werden heute nach Angaben des Umweltbundesamtes ungefähr 2/3 der Energie allein für Prozesswärme verbraucht [3.1c] und auch im Bereich Gewerbe, Handel und Dienstleistungen betrug der Anteil für Raumwärme, Warmwasser, Prozesswärme und -kälte insgesamt 72 Prozent am Endenergiebedarf. [3.1d] Bei etwa einem Drittel des Wärmebedarfs liegt die erforderliche Temperatur unter 100 Grad Celsius. In Zukunft kann aber ein deutlich höherer Wärmeanteil als heute mit erneuerbaren Energien abgedeckt werden. Mit Vakuumröhrenkollektoren lassen sich Flüssigkeitstemperaturen bis zu 350 Grad Celsius erreichen (siehe 1.4.1) und mit Solarturmkraftwerken kann sowohl Strom als auch Prozesswärme bis zu 800 Grad Celsius erzeugt werden. [3.1e] Ein Teil der Prozesswärme, die für technische Prozesse wie zum Beispiel das Schmelzen und Schmieden benötigt wird, muss aber wahrscheinlich auch zukünftig mit Hilfe von Strom erzeugt werden. Für die weiteren Abschätzungen gehen wir auch auf Grund eines hohen Wärmeeinsparungspotentials für den Bereich Industrie, Gewerbe, Handel und Dienstleistungen von einem Wärmeanteil von nur noch 50% am gesamten Energiebedarf aus.

Strom [TWh] Wärme [TWh] Mobilität

244 0 261

Private Haushalte:

97 113

Wirtschaft und Verwaltung:

370 370

Summe:

972 484

Tab.: Jährlicher direkter Bedarf an Strom und Wärme in der nachhaltigen Zukunft

Wind und Sonneneinstrahlung stehen nicht gleichmäßig zur Verfügung und schwanken im Tages-, aber auch im Jahresverlauf in ihrer Intensität. Auf der anderen Seite besteht beim Energiebedarf ein sich im Tagesverlauf, aber auch jahreszeitlich ändernder Bedarf. Im Winter wird mehr Wärme zum Heizen benötigt und während der Urlaubsreisezeit und zu Festtagen wird der Strombedarf im Verkehr ansteigen. Das Angebot und die Nachfrage von Strom und Wärme verändern sich also unabhängig voneinander und beide müssen daher zwischengespeichert werden. Die hierbei entstehenden Verluste werden in den nächsten Kapiteln abgeschätzt.

3.2. Zusätzlicher Wärmebedarf durch Verluste bei der Wärmeleitung und -speicherung

Die Fraunhofer Gesellschaft ISE geht bei Wärmespeichern von einem Wirkungsgrad von 90% aus. [3.2a] In aller Regel wird man auf die benötigte Wärme über einen Wärmespeicher zugreifen. Daher gehen wir von einem Verlust bei der Wärmeleitung und -speicherung von etwa 10% aus und es ergibt sich bei einem Wärmebedarf von 484 TWh (siehe Tabelle) ein zusätzlicher (Wärme-)Energiebedarf von 48 TWh bzw. ein Gesamtbedarf von 532 TWh.

3.3. Verluste der Stromleitung und -speicherung

Immer wenn elektrischer Strom fließt, wird ein Teil der elektrischen Energie in Wärme umgewandelt. Auch beim Laden und Entladen von Stromspeichern entstehen Verluste, die durch eine höhere Stromproduktion ausgeglichen werden müssen.

3.3.1 Stromleitungsverluste

Beim Fließen des Stromes durch herkömmliche Kabel und Transformatoren entsteht Wärme und ein Teil der Energie ist dann nicht mehr als Strom verfügbar. Die eingespeiste Leistung ist höher als die, die entnommen werden kann. Das Bundesministerium für Wirtschaft und Energie hat die „Netzverluste und Nichterfasstes“ für die Jahre 2010 bis 2014 berechnet. Sie liegen zwischen 4,7% im Jahr 2010 und 4,2% im Jahr 2014 der jährlichen Nettostromerzeugung [3.3.1a]

Meine Zwischenfrage: wie kann das sein, wenn einer Bruttostromerzeugung von ganz grob 600 TWh eine abgerechnete Strommenge von knapp über 500 TWh gegenübersteht? Da fehlen meiner Rechnung nach eher 17%. Wo wird hier wann was gemessen?

Auch wenn im Hochspannungsübertragungsnetz zukünftig die verlustärmere Übertragung mit Gleichstrom [Tennet TSO GmbH: „Hochspannungs-Gleichstrom-Übertragung“ [3.3.1b] oder sogar supraleitende Stromkabel [zum Beispiel IASS Potsdam: „Supraleitung“ [3.3.1c] eingesetzt werden, ist das Verteilungsnetz so ungleich viel größer, dass der durchschnittliche Stromleitungsverlust nun wenig sinken würde. Die Bundesnetzagentur unterstellt im „Entwurf des Szenariorahmen 2030“, dass die Netzverluste durch die weitergehende Integration der EE und hohen Transportaufgaben bis 2030 bzw. 2035 zwischen 6% und 10% steigen können. [3.3.1d] Dem widerspricht jedoch der Verband der Elektrotechnik in seiner Studie „der Zellulare Ansatz“ aus dem Jahr 2015 [3.3.1e]. Bei vollständiger Stromversorgung durch Erneuerbare Energien sinkt der Übertragungsbedarf von 602 TWh auf 394 TWh im Jahr [3.3.1f] Schätzt man den durchschnittlichen zukünftigen Verlust im Stromnetz zu 5% ab, so errechnet sich bei einem jährlichen Strombedarf von 972 TWh (siehe Tabelle) ein zusätzlicher Bedarf von 49 TWh.

3.3.2 Verluste bei der Stromspeicherung

Jede Form der Stromspeicherung ist mit Verlusten verbunden. Daher ist es klüger den Strom in möglichst hohem Maße direkt zu verbrauchen. Mit der Energiewende und der Umstellung der Stromerzeugung auf Sonne und Wind als schwankende Hauptstromerzeuger werden Stromspeicher aber zum alltäglichen Begleiter in der Energieversorgung. Wenn mehr erneuerbarer Strom erzeugt werden kann, als gerade benötigt wird, wird er für die Zeiträume geringer Erzeugung zwischengespeichert. Herrscht in Nachtstunden Windstille liefern weder PV Anlagen noch Windkraftanlagen Strom. Auch bei mehrtägigen Wetterlagen mit zu wenig Wind und Sonnenstrahlung wird die Stromversorgung durch von Wind und Sonne unabhängige erneuerbare Energien (wie zum Beispiel Laufwasserkraftwerke) und Stromspeicher erfolgen. Welcher Stromanteil wird in nun in den verschiedenen Verbrauchsbereichen vermutlich gespeichert werden?

3.3.2.1 Stromspeicherverluste im Verkehrsbereich

Der Stromanteil am Energieeinsatz betrug 2014 im Verkehrsbereich nur 1,6% [3.3.2.1a] und wurde fast ausschließlich im Schienenverkehr verbraucht. Dieser Anteil wird sicherlich ansteigen, so dass im Bereich der Mobilität ein Teil des erzeugten Stromes direkt verbraucht und nicht zwischengespeichert werden muss. Dieser Anteil ist heute nur schwer abzuschätzen, ebenso welchen Anteil bei der Energieversorgung strombasierte flüssige oder gasförmige Kraftstoffe haben werden. Bei ihnen würden allerdings praktisch keine Speicherverluste auftreten. Näherungsweise gehen wir davon aus, dass in Zukunft dreiviertel des gesamten Energiebedarfs über Stromspeicher läuft (183 TWh). Bei modernen stationären Akkus, wie sie zum Beispiel in Kombination mit Photovoltaikanlagen eingesetzt werden, entstehen dabei Verluste von ca. 6%. [3.3.2.1b]. Beim Laden des Fahrzeugakku und dem Stromverbrauch der Zusatzgeräte tritt dann noch ein Verlust von etwa 20% auf. [3.3.2.1c]. Bei einem Energiebedarf von 183 TWh, wie er in Kapitel 1.1 abgeschätzt wurde, errechnet sich damit ein jährlicher Zusatzbedarf von 30% bzw. 55 TWh. Beim internationalen See- und Flugverkehr gehen wir näherungsweise von keinen Verlusten bei der Lagerung von strombasiert erzeugten Kraftstoffen aus.

3.3.2.2 Stromspeicherverluste der privaten Haushalte

Betrachtet man den Stromverbrauch für einen bestimmten Zeitraum (zum Beispiel einen Tag) von Gruppen (zum Beispiel Haushalte oder Gewerbebetriebe), die ein ähnliches Verbrauchsverhalten haben und stellt ihn in einem Diagramm dar, ergibt sich ein „Standardlastprofil Strom“. [3.3.2.2a] Der Stromverbrauch privater Haushalte ist von Tag zu Tag etwa gleich und folgt dabei einem typischen Tagesverlauf:

Grafik
Standardlastprofil „Haushalt“ [3.3.2.2b]

Ab 4.00 Uhr morgens steigt der Strombedarf bis mittags 13.00 Uhr kontinuierlich an. Bis etwa 16.00 Uhr am Nachmittag sinkt er dann kontinuierlich auf das Niveau von 6.00 Uhr morgens ab, um dann auf die höchsten Verbrauchswerte gegen 19.30 Uhr zu steigen (ungefähr zweieinhalbmal so hoch wie morgens um 6.00 Uhr und 20% höher als mittags). Danach sinkt der Stromverbrauch kontinuierlich auf den tiefsten Wert gegen 3.00 Uhr in der Nacht. Am Wochenende verschiebt sich das Lastprofil etwas. Der Strom für private Haushalte wird hauptsächlich mit Photovoltaik-Anlagen erzeugt werden. Deren Stromerzeugung beginnt mit dem Sonnenaufgang und steigt dann auf einen maximalen Wert um ca. 14.00 Uhr. Danach sinkt sie bis in die Abendstunden ab. [3.3.2.2c] Dies führt zu einer Stromüberproduktion am frühen Nachmittag und natürlich zu einer fehlenden Stromerzeugung in den Nachtstunden, die aber durch einen Stromspeicher ausgeglichen werden kann. Außerdem müssen sonnenreiche Tage dazu genutzt werden, den Strom für Tage mit nur wenig Sonnenschein zu erzeugen und zu speichern. Nach dem Standardlastprofil für Haushalte an Werktagen beträgt der Strombedarf zwischen 0.00 Uhr/7.00 Uhr und 19.00 Uhr/0.00 Uhr zusammen etwa 42% des Tagesbedarfs. [3.3.2.2d] Dieser Anteil muss über Stromspeicher gedeckt werden, da in dieser Zeit keine ausreichende Sonneneinstrahlung auf die Photovoltaikmodule vorhanden ist. Durch einen Wirkungsgrad der Module von 20% und mehr ist bereits heute eine gemischte Ausrichtung der Photovoltaikmodule bei vorzugsweiser Nutzung von Dünnschichttechnologien in alle Himmelsrichtungen sinnvoll. Damit ist eine längere und gleichmäßige Stromerzeugung im Tagesverlauf möglich. Hinzu kommt die Stromversorgung aus dem Speicher der Haushalte an Tagen mit nur geringer Sonneneinstrahlung. Setzt man für solche Tage einen Anteil von 10% an, ergibt sich ein zu speichernder Stromanteil von insgesamt 52%. Bei einem Jahresstrombedarf für private Haushalte von 97 TWh (siehe Tabelle xx Kapitel 3.1) wären dies 50 TWh Speicherkapazität. Bei modernen stationären Akkus, wie sie in Kombination mit Photovoltaikanlagen eingesetzt werden, entstehen dabei Verluste von ca. 10%. [3.3.2.2e] Damit ist im Bereich der privaten Haushalte ein Zusatzbedarf in Höhe von etwa 5 TWh zu berücksichtigen.

Hinweis: Für diese Strategie habe ich eine Speicherkapazität von 20% des Jahresstromverbauchs als sinnvoll ermittelt. Das ist aber noch ein viel zu hoher Invest.

3.3.2.3 Stromspeicherverluste von Industrie und Verwaltung

In Gewerbebetrieben steigt der Stromverbrauch nach dem Standardlastprofil ab etwa 3.30 Uhr kontinuierlich bis 12.30 Uhr auf mehr als das Vierfache an. Nach einem Zwischentief gegen 14.00 Uhr steigt der Stromverbrauch am Nachmittag noch einmal etwas an, um dann bis das Niveau von 3.30 Uhr morgens abzufallen.

Grafik
Lastprofil „Gewerbe allgemein“ [3.3.2.3a]

Die gleiche Tagesanalyse wie bei dem Lastprofil für Haushalte ergibt für das Lastprofil „Gewerbe allgemein“ einen täglichen Speicherbedarf von 29%. Berücksichtigt man auch hier sonnenschwache Tage mit einem zusätzlichen Speicherbedarf von 10%, ergibt sich ein Gesamtbedarf von 39%. Bei Industrieunternehmen sollte der Bedarf nicht höher sein, da sie oft den produktionsbedingten Stromverbrauch zumindest teilweise in die Tageszeiten mit hoher Stromerzeugung verschieben können (die sogenannte „Lastverschiebung“). Der Stromverbrauch von Dienstleistungsunternehmen und Verwaltungen wird in der Regel dem Lastverlauf des Standardprofils für „Gewerbe zwischen 8 und 18.00 Uhr“ mit einem Tagesspeicherbedarf von 10% [3.3.2.3b] folgen. Für den gesamten Bereich „Wirtschaft und Verwaltung“ schätzen wir den Speicherbedarf auf 35% des Verbrauchs bzw. 130 TWh (nach Tabelle, Kapitel 3.1). Berücksichtigt man wieder Speicherverluste von 10%, errechnet sich für diesen Bereich ein zusätzlicher Strombedarf von 13 TWh.

3.3.2.4 Stromspeicherverluste durch die saisonale Speicherung

Die Energieversorgung der Zukunft basiert fast vollständig auf den erneuerbaren Energien Sonne und Wind. Diese Energiequellen stehen jedoch nicht gleichmäßig über das Jahr verteilt zur Verfügung, sondern die Sonneneinstrahlung ist in Deutschland im Juli und der Windertrag in den Wintermonaten am höchsten:

Grafik
Mittlere Sonnenscheindauer der Jahre 1893 bis 2015 [3.3.2.4a]

Grafik
Prozentuale Veränderung des Mittelwerts des Windertragsindex im Jahr 2015 von Küstenlage und Binnenland im Vergleich zum Durchschnitt der Jahre 2010 bis 2014 [3.3.2.4b]

In den Jahren 2011 bis 2014 hat sich die Stromerzeugung aus Windkraft- und Photovoltaikanlagen auf Monatsbasis recht gut ergänzt:

Grafik [3.3.2.4c]
Monatliche Photovoltaik- und Windstromproduktion in den Jahren 2011 bis 2014

Bei einer nachhaltigen Energieversorgung wird jedoch der Anteil der solaren Stromerzeugung wesentlich höher als der der Windkraft sein. Wir gehen in dieser Ausarbeitung von einem Anteil von 79% für die Photovoltaik und 21% für die Stromerzeugung mit Windkraftanlagen aus (siehe Kapitel 4). Legt man die Jahresgänge für Sonne und Wind aus den Grafiken zugrunde, ist damit die Stromerzeugung im Juni am höchsten und im November am niedrigsten:

Grafik [3.3.2.4d]

Modell Jahresgang der Stromerzeugung [TWh] mit 1000 GW installierter Photovoltaik und 84 GW installierter Leistung an onshore Windkraftanlagen und 30 GW installierter Leistung an offshore Windkraftanlagen.

Für die jährliche Stromerzeugung werden folgende Volllaststundenzahlen zugrunde gelegt: Photovoltaik 940, onshore Windkraftanlagen 1600 und offshore Windkraftanlagen 3900. Es errechnet sich dann eine Jahresstromerzeugung von 1191 TWh. Mit welchem Jahresgang im Stromverbrauch ist zu rechnen? Da im Jahr 2015 fast kein Strom gespeichert wurde, kann man die Stromerzeugung auch als Maß für den Stromverbrauch nehmen. [3.3.2.4e] Hochgerechnet auf einen Stromverbrauch von 1191 TWh und unter Berücksichtigung der monatlichen Stromerzeugung nach dem oben genannten Modell ergibt sich der folgende Jahresgang:

Grafik
Monatlicher Saldo der Stromerzeugung und des Stromverbrauchs im 1191 TWh-Modell

Ab April ist die Stromerzeugung höher als der monatliche Stromverbrauch. Der Stromüberschuss steigt dann bis auf fast 55 TWh im Juni an. Von Oktober bis März wird weniger Strom als benötigt produziert. Das bedeutet, dass ab April ein Stromüberschuss gespeichert werden sollte, der dann in den Monaten mit zu geringer Stromproduktion die Stromversorgung ergänzt. Summiert man die Überproduktion in den Monaten April bis September auf, so ergibt sich als Speicherbedarf eine Summe von 220 TWh. Zusätzlich sollte man noch eine Reserve von 10 Tagesverbräuchen im März einrechnen (33 TWh) falls in dem Moment, in dem die Großspeicher leer sind, eine Wind- und Sonnenflaute eintritt. Als „saisonaler Speicher“ für diese Strommenge bieten sich technologisch das „Power to Gas“ – Verfahren mit dem bereits vorhandenen Gasnetz und vielleicht auch die Druckluftkavernenspeicherung an. Die Redox-Flow-Batterie sollte dabei nicht vergessen werden: Speicherverlust p.a. 2%, Strom-zu-Strom 85%, mittlerweile auf Polymerbasis ohne Rohstoffsorgen herstellbar (www.jenabatteries.com), preislich mit ca. 800 €/kWh Kapazität noch zu teuer, aber nahezu unbegrenzte Zyklenzahl und daher den beiden genannten Technologien insgesamt klar überlegen. Der „Strom zu Strom“-Wirkungsgrad einer Druckluftkavernenspeicherung wird heute mit 75% bis 80% angegeben. Ernsthaft? Aber sicher nur mit externer Wärmezufuhr bei Leistungsabruf. Ist das dabei eingerechnet?

Beim „Power to Gas“ – Verfahren mit 30% bis 45% abgeschätzt [3.3.2.4f]. wegen des angeblich doppelt so hohen Wirkungsgrads ist dieser Technologie die Druckluftkavernenspeicherung vorzuziehen? Insbesondere in Salzkavernen kann in Druckluft oder Wasserstoff umgewandelter überschüssiger Wind- und Solarstrom gespeichert werden. Solche Kavernen werden in Deutschland bereits seit Jahrzehnten zur Speicherung von Erdöl und Erdgas genutzt. Für die Speicherung von Gasen unter Druck besitzen sie den Vorteil einer hohen mechanischen und chemischen Stabilität und Dichtheit. Sie lassen sie sich schnell und flexibel befüllen und entleeren und es muss relativ wenig Gas permanent im Speicher verbleiben, um den Druck aufrecht zu erhalten. In dem vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Verbundforschungsprojekt InSpEE (Informationssystem Salzstrukturen – Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien) wurde vorhandenes geologisches Datenmaterial über den norddeutschen Untergrund systematisch ausgewertet. [3.3.2.4g] Aufgrund der geologischen Verhältnisse in Deutschland sind als Kavernen nutzbare Salzvorkommen hauptsächlich in Nord- und Mitteldeutschland vorhanden. Im Süden Deutschlands gibt es nur sehr vereinzelte Salzvorkommen mit geringen Mächtigkeiten, die zudem einen hohen Anteil nicht löslicher Bestandteile aufweisen. Damit eignen sie sich nur schlecht für ein Ausspülen im Salz zum Anlegen einer Kaverne. [3.3.2.4h] Das Gutachten „Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050“ des „Runden Tisches Energiewende Niedersachsen“ schätzt allein für Niedersachsen das Potential für die Speicherung in unterirdischen Kavernenspeichern auf 350 TWh.[3.3.2.4i] Im Sinne einer dezentralen und verbrauchsnahen Stromversorgung und eines möglichst geringen Ausbaus des Übertragungsstromnetzes wäre es sinnvoll, im süddeutschen Raum die „Power to Gas“-Technologie in Verbindung mit dem vorhandenen Gasnetz als saisonalen Speicher zu verwenden. Geht man von einem durchschnittlichen Wirkungsgrad der saisonalen Stromspeicherung von 65% Prozent aus, so müssen 35% bzw. 89 TWh der im saisonalen Speicher gespeicherten Strommenge als Verlustausgleich zusätzlich erzeugt werden.

3.3.2.5. Stromspeicherverluste der Infrastrukturspeicher

Bei Infrastrukturspeichern auf Redox Flow Basis geht man von einem Gesamtwirkungsgrad von 90% aus (leider nur 85%, soweit ich weiß.) Bei der Zuordnung von Speicherkapazitäten gehen wir mangels Erfahrung von einer Annahme aus. In Deutschland existieren laut BnetzA ca. 600.000 Trafostationen welche also die Mittelspannung, meist 20 kV in die für uns in der Regel brauchbare Niederspannung 240/400 V transformieren.

Speicherte man an jedem Trafo 1 MWh/Tag erhielte man x 5 Tage = 5 MWh x 600.000 = 3 TWh. 1 MWh Überschussspeicherung aus PV am Vormittag 0,4 MWh, am Nachmittag z. B. 70% und Überschussspeicherung aus Wind 100% bei Nacht wären 2,1 MWh…

Dann würden pro Jahr wohl eher 400 MWh oder 600 MWh pro Standort ein- und ausgespeichert…

Warum 5 Tage?

Jegliche Vorausberechnung halte ich für am Ende nutzlos. Klüger wäre es, mit einer Tageskapazität zu beginnen und dann die Speicher regelmäßig jährlich zu vergrößern um die Effekte zu dokumentieren. Schlicht weil es in der realen Umsetzbarkeit sowieso nicht so schnell geht.

Die Annahme das jeder Trafostation ein Speicher zugeordnet wird ist natürlich nur ein Modellhafte Betrachtung.

Bitte beachten: Bei Trafostationen und auch Umspannwerken empfiehlt sich dringend ein gemischtes System aus Redox-Flow für die Kapazität und Li-Ion für die Leistungsbereitstellung sowie der Einsatz von Superkondensatoren.

Ein Speicherverlust von 0,3 TWh bedeutet, dass in einem Jahr in einem Infrastrukturspeicher von 1 MWh nur 5 MWh ein- und ausgespeichert werden (Erzeugungs- und Lastspitzen). Lohnt dafür der Aufwand? Eine Notversorgung könnte auch mit Notstromaggregaten und P2G-Kraftstoff erfolgen.

Damit summiert sich der zusätzliche Energiebedarf durch Stromleitungsverluste, die Speicherverluste für Haushalte, Wirtschaft, Verwaltung, Infrastruktur und der Mobilität sowie durch einen zusätzlichen Energieaufwand für die saisonale Speicherung auf 211 + x TWh und der gesamte deutsche Stromverbrauch nach der Energiewende wird auf 1183 + x TWh geschätzt:

Strom [TWh] Wärme [TWh] Stromleitungen:

49 0

Mobilität:

55 0

Private Haushalte 5

Wirtschaft und Verwaltung: 13

Infrastrukturspeicher: 0,3

saisonale Speicherung: 89

Summe: 211 + x 48

Tab.: Zusätzlicher Bedarf an Strom und Wärme durch Leitungs- und Speicherverluste

3.3. Rohstoffverfügbarkeit für die Wärme- und Stromspeicherung

3.3.1 Rohstoffverfügbarkeit für die Wärmespeicherung

Wie in Kapitel 1.4.1 erläutert wurde können für die Wärmespeicherung je nach Aufgabenstellung unterschiedliche Technologien eingesetzt werden. Hierbei werden industrielle Standardprodukte und -werkstoffe aus den verschiedensten Rohstoffen eingesetzt. Eine Rohstoffknappheit für den Bereich der Wärmespeicherung ist nicht zu erwarten.

3.3.2. Rohstoffverfügbarkeit für die Stromspeicherung

Wie in den Kapiteln oben erläutert wurde, entsteht durch die fast ausschließliche Stromerzeugung mit Sonne und Wind, in allen Verbrauchsbereichen ein hoher Bedarf an Stromspeicherkapazitäten.

3.3.2.1. Stromspeicher im Bereich Mobilität

Mit den Zulassungszahlen des Kraftfahrt-Bundesamtes vom 01. Januar 2016 für PKW, Krafträder, Busse, Nutzfahrzeuge und sonstige KFZ (z.B. Traktoren oder Baumaschinen) bzw. vom 01. Januar 2015 für die verschiedenen LKW-Klassen [3.3.2.1a] kann man das für alltagstaugliche Fahrzeugreichweiten notwendige Fahrzeugspeichergesamtvolumen zu ca. 6,5 TWh abschätzen. [3.3.2.1b] Allerdings kann dies nur eine grobe Schätzung sein, da sich zum Beispiel die Reichweitenerfordernisse durch den Einsatz der Oberleitungstechnologie im Bereich der Busse oder LKWs oder auch die einzelnen Zulassungszahlen in Zukunft deutlich verändern können. Der weltweite Fahrzeugbestand ist mit 1,1 Milliarden Kraftfahrzeugen [3.3.2.1c] ca. zwanzigmal so hoch. Legt man ähnliche Reichweiten der Fahrzeuge wie in Deutschland zu Grunde, bedeutet das einen Speicherbedarf von 130 TWh. Als Fahrzeugbatterien bieten sich aus heutiger Sicht Lithium-Ionen-Akkus aufgrund ihrer vergleichsweise hohen Energiedichte an. Insbesondere auch deswegen, weil Forschungsergebnisse vermuten lassen, dass sich die Speicherkapazitäten durch die Verwendung anderer Anodenwerkstoffe im Akku noch deutlich steigern lassen [3.3.2.1d] Auf der anderen Seite wurden im Jahr 2012 die Lithiumrohstoffreserven – das heißt die Menge an Lithium, die heute technisch und ökonomisch abbaubar ist – auf 13 Millionen Tonnen geschätzt. [3.3.2.1e] Bei einem Anteil von 80g Lithium pro kWh-Speicherkapazität aus [3.3.2.1f] ließen sich Akkus mit einer gesamten Speichermenge von 160 TWh herstellen. Auch wenn die Ressourcen an Lithium, also die Menge des in der Natur vorkommenden Rohstoffes, die – heute oder in Zukunft – gewonnen werden könnten, vom geologischen Dienst der USA im Jahr 2012 auf 34 Millionen Tonnen geschätzt wurden [3.3.2.1e] ist eine Rohstoffknappheit an Lithium zu erwarten. Denn Lithium findet nicht nur in Fahrzeug-Akkus, sondern auch in vielen anderen industriellen Produkten und in der PharmazieAnwendung. [3.3.2.1g]
Allerdings ist die Magnesium-Ionen-Batterie ist bereits auf dem Weg.

Schwer abzuschätzen ist, inwieweit sich zukünftig der Personen- und Güterverkehr auf die Schiene verlagern und die Fahrzeugzahlen sinken werden. Ohne massive politische Einflussnahme zumindest gar nicht. Der Anteil des elektrischen Schienenverkehrs am Energiebedarf im Verkehrssektor ist mit 1,6 Prozent im Jahr 2014 noch sehr gering. [3.3.2.1h] Insbesondere im Bereich der Transporte mit 40-Tonnen-Sattelzügen verbrauchen Bahn und Schiff weniger als die Hälfte der Energie. [3.3.2.1i] Im Gegensatz zu den Fahrzeugspeichern könnten für ortsgebundene Stromspeicher wie zum Beispiel für Stromtankstellen auch andere Batteriespeicher (zum Beispiel Redox-Flow- oder Natrium-Schwefel-Stromspeicher) eingesetzt werden. Für diese ist keine Rohstoffknappheit zu erwarten.

3.3.2.2. Stromspeicher im Bereich Private Haushalte

Es wurde abgeschätzt, dass die privaten Haushalte – im Jahr 2014 waren es 40,2 Millionen [3.3.2.2a] – zukünftig im Jahr etwa 102 TWh Strom verbrauchen werden. Das entspricht einem durchschnittlichen Tagesverbrauch 0,28 TWh. Legt man die Größe eines Haushalts- oder Quartiersspeicher auf einen durchschnittlichen 5-Tages-Verbrauch aus, so berechnet sich die Gesamtspeichermenge auf 1,4 TWh. Aber private Haushalte werden ihre elektrischen Kraftfahrzeuge zumindest teilweise auch mit selbsterzeugten Strom laden wollen. Im Jahr 2014 wurden im motorisierten Individualverkehr 939 Milliarden km zurückgelegt. [3.3.2.2a] Legt man einen durchschnittlichen Verbrauch von 15 kWh pro 100km zu Grunde, so entspricht dies einem Jahresverbrauch 140 TWh bzw. durchschnittlich 0,38 TWh pro Tag. Soll der Haus- oder Quartiersspeicher auch hier einen 5-Tages-Verbrauch abdecken können, so erhöht sich die gesamte Speichergröße um 1,9 TWh auf insgesamt 3,3 TWh. Bei 40,2 Millionen Haushalten wäre das eine Speichergröße von 84 kWh pro Haushalt. Die heute angebotenen Haushaltsstromspeicher sind in aller Regel Stromspeicher mit Lithium-Ionen-Technologie. Im Gegensatz zu Fahrzeugspeichern können aber in privaten Haushalten oder bei Quartiersspeichern auch andere Speichertechnologien wie Redox-Flow-Batterien oder Druckluftspeicher eingesetzt werden. Dies ist auch wahrscheinlich, da die weltweit zurzeit verfügbaren Lithium-Ressourcen begrenzt sind und der Bedarf für Fahrzeugspeicher und andere Akkumulatoren diese vermutlich im Wesentlichen verbrauchen wird (siehe Kapitel 3.3.2.1).

3.3.2.3. Stromspeicher im Bereich Industrie und Verwaltung

Für den Bereich Industrie und Verwaltung wird der zukünftige Jahresstromverbrauch inklusive der Verluste auf 383 TWh geschätzt. Geht man für die Speichergröße auch hier von einem 5-Tagesverbrauch als Zielgröße aus, ergibt sich ein Speichervolumen von ca. 5,6 TWh. Hinzu kommen noch Speicher für das Laden der gewerbsmäßigen Fahrzeug-Flotten und des schienengebundenen Personen- und Güterverkehrs. Der jährliche Verbrauch ergibt sich aus der Differenz des Verbrauchs des Verkehrsbereiches minus dem motorisierten Individualverkehrs zu 159 TWh. der durchschnittliche Tagesverbrauch beträgt dann ca. 0,44 TWh. Legt man als Speicherbedarf einen durchschnittlichen 3-Tagesverbrauch zu Grunde erhöht sich der gesamte Speicherbedarf im Bereich Industrie und Verwaltung um 1,3 auf insgesamt 6,9 TWh. Als Speichertechnologien kommen aus heutiger Sicht auch hier wegen der Ressourcenknappheit von Lithium vor allem Redox-Flow, Druckluft oder NaS-Batteriespeicher in Frage.

3.3.2.4. Stromspeicher im Bereich Infrastruktur

Relation zu den Speichern im Bereich „Private Haushalte“ und „Industrie und Verwaltung“?!

https://de.wikipedia.org/wiki/Transformatorenstation

Infrastrukturspeicher = 3.000 GWh Speicherkapazität
Speicher 600.000 x 1 MWh/Tag x 5 Tage = 5 MWh
Für diese Speicher sind aus heutiger Sicht nicht nur Redox-Flow Systeme geeignet. Im enera-Projekt ist z. B. eine NaS-Batterie mit 3MWh geplant.

Die Entwicklung ist jedoch noch nicht abgeschlossen. Die Energiedichte von Redox-Flow Systemen ist noch zu gering.
Es steht also eine Speicherkapazität von 4.320 GWh elektrisch gespeicherter Energie zur Verfügung. Damit kann die öffentliche Versorgung der Bevölkerung mit Elektroenergie für einen Zeitraum von 5 Tagen abgesichert werden. Gleichzeitig sind diese Speicher großflächig verteilt, also dezentral angeordnet. Diese Tatsache verhindert oder erschwert einen Zusammenbruch der Versorgung mit Elektroenergie.

Technologien: Redox-Flow, NaS-Batterien (z. Zt. auch Lithium-Ionen)

3.3.2.5. Saisonale Stromspeicher

Im Kapitel 3.3.2.4 wurde bereits auf die Technologien für die saisonale Speicherung des in den Monaten April bis September überschüssig erzeugten PV-Stroms eingegangen. Das Gasnetz als Speicher ist bereits in reichlichem Volumen vorhanden und es können auch ausreichend viele Kavernen für die Druckluftspeicherung ausgespült werden. Allerdings muss noch eine erhebliche Kraftwerkskapazität aufgebaut werden. Geht man von einem jährlichen Strombedarf von 1.191 TWh aus, so bedeutet dies einen Tagesverbrauch von ca. 3,3 TWh. Ein kleiner Teil des Stroms kann durch die gesicherte Leistung von Laufwasserkraftwerken oder Gruben- und Deponiegas erzeugt werden. Sind im Extremfall jedoch die in den Kapiteln oben beschriebenen Alltagsstromspeicher leer, so muss von den Generatoren der saisonalen Speicher eine Spitzenleistung von ca. 163 GW zur Verfügung gestellt werden. [3.3.2.5a] Mit Stand vom 10. Mai 2016 weist die Kraftwerksliste der Bundesnetzagentur bereits heute eine fossile Kraftwerksleistung und damit eine Generatorenleistung von ca. 107 GW aus. Durch eine Erhöhung der Generatorenleistung um ca. 56 GW ist nicht mit einer Rohstoffknappheit zu rechnen.

Literaturverzeichnis und Anmerkungen:

3 Die Welt einer nachhaltigen Energieversorgung

[3a]
Dachintegrierte Photovoltaik – Indach-Anlagen und Solarziegel:

http://www.photovoltaiksolarstrom.de/photovoltaiklexikon/dachintegrierte-photovoltaik
Die Zukunft ist leicht: Organische Solarfolien von Heliatek:

http://www.heliatek.com/de/

[3a]
Die energetische Selbstversorgung einer Wohnsiedlung wird zum Beispiel im Forschungsprojekt „Plusenergiesiedlung Ludmilla-Wohnpark Landshut“ untersucht:

http://www.eneff-stadt.info/de/pilotprojekte/projekt/details/plusenergiesiedlung-ludmilla-wohnpark-landshut/

Dass auch in mehrstöckigen Wohngebäude ein Stromüberschuss erzielt werden kann, demonstriert der für sein nachhaltiges Bauen bekannte Architekt Karl Viridèn an diesem Beispiel:

http://www.tagesanzeiger.ch/zuerich/region/diese-fassade-liefert-mehr-energie-als-die-bewohner-brauchen/story/31316622

[3c]
Fernwärme in der Zukunft: Hamurg Institut: FERNWÄRME 3.0 Strategien für eine zukunftsorientierte Fernwärmepolitik, 19.02.2015

https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/energie/150310_HHI-Studie-Fernwaerme.pdf, Seite 7

[3d]
RWE verknüpft Solarstrom mit Elektromobilität:

http://www.energiefirmen.de/news/nachrichten/artikel-31462-rwe-verknuepft-solarstrom-mit-elektromobilitaet

[3e]
Siehe zum Beispiel:
https://de.chargemap.com/points/details/parkhaus-elisenhof
Die passende Ladestation für Parkhaus und Parkplatz:

http://www.europarking.de/Die-passende-Ladestation-fuer-Parkhaus-und-Parkplatz,QUlEPTY2MTAyMSZNSUQ9MzAwMjI.html

[3f]
Zum Beispiel: Kostenlos Ökostrom im KÖWE tanken.

http://www.koewe.de/allgemeine-info/parken/

[3g]
Als Beispiel: A1 Autobahnraststätte Kölliken Nord in Kölliken:

http://www.goingelectric.de/stromtankstellen/Schweiz/Koelliken/A1-Autobahnraststaette-Koelliken-Nord-A1-Autobahnraststaette-Koelliken-Nord/1442/
[3g]
Erklärung Infrastrukturspeicher:

3.1 Wärme und Strom in der Zukunft

[3.1a]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6, 7 und 7a; Stand 12.01.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[3.1b]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 85, Tabelle B-11,

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[3.1c]
Umweltbundesamt: „Energieverbrauch nach Energieträgern, Sektoren und Anwendungen“;

http://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/energieverbrauch-nach-energietraegern-sektoren

[3.1d]
http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 50

[3.1e]
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-10194/#/gallery/14554

3.2. Verluste der Wärmeleitung und -speicherung

[3.2a]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

3.3. Verluste der Stromleitung und -speicherung

3.3.1 Stromleitungsverluste

[3.3.1a]
Bundesministerium für Wirtschaft und Energie: Zahlen und Fakten – Stromaufkommen und -verbrauch

http://www.bmwi.de/DE/Themen/Energie/Strommarkt-der-Zukunft/zahlen-fakten.html

[3.3.1b]

http://suedlink.tennet.eu/technologie/hochspannungs-gleichstrom-uebertragung.html

[3.3.1c]

http://www.iass-potsdam.de/de/content/supraleitung

[3.3.1d]
Die Bundesnetzagentur geht im Entwurf des Szenariorahmen 2030 in Tabelle 9 von Verlusten zwischen 30 -50 TWh in den Jahren 2030/2035 aus. Allerdings wird dabei in den Szenarien laut Tabelle 10 von einem Nettostromverbrauch von 490-523 TWh ausgegangen. Dies wären Übertragungsverluste zwischen 6% und 10%. Dabei unterstellt die Bundesnetzagentur, dass die Netzverluste durch die weitergehende Integration der EE und hohen Transportaufgaben die Netzverluste bis 2030 bzw. 2035 steigen.

http://data.netzausbau.de/2030/Szenariorahmen_2030_Entwurf.pdf

[3.3.1e]
VDE Studie „der Zellulare Ansatz“

https://d2230clyyaue6l.cloudfront.net/wp-content/uploads/VDE_ST_ETG_GANN_web.pdf

[3.3.1f]
„VDE-Studie zeigt, wie Stromnetzausbau reduziert werden kann“

https://www.vde.com/de/verband/pressecenter/pressemeldungen/fach-und-wirtschaftspresse/2015/seiten/38-15.aspx
und
„Zahlen, Daten, Fakten zur Energiewende“, MdB Göppel, Folie 53 und 54

http://www.goeppel.de/fileadmin/template/goeppel/user_upload/Praesentationen/2016/160309_Praesentation_HP_Goeppel_.pdf?PHPSESSID=96fc6e4a316e8bd0047bc14323be0faf

3.3.2 Verluste bei der Stromspeicherung

3.3.2.1 Stromspeicherverluste im Verkehrsbereich

[3.3.2.1a]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6a, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[3.3.2.1b]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

[3.3.2.1c]
„Verbrauch, Ladeverlust und Wirkungsgrad im E-Auto“

http://e-auto.tv/verbrauch-ladeverlust-und-wirkungsgrad-im-e-auto.html

3.3.2.2 Stromspeicherverluste der privaten Haushalte

[3.3.2.2.a]

https://www.bdew.de/internet.nsf/id/DE_Standartlastprofile und

https://de.wikipedia.org/wiki/Standardlastprofil

[3.3.2.2b]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in KW eines privaten Haushaltes auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil H0

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofil_Haushalt.xls

oder auch Umweltbundesamt, Climate Change 14/2013: „Modellierung einer vollständig auf erneuerbaren Energien basierenden Stromerzeugung im Jahr 2050 in autarken, dezentralen Strukturen“, Seite 8 Abbildung 2

https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/climate_change_14_2013_modellierung_einer_vollstaendig_auf_erneuerbaren_energien.pdf

[3.3.2.2c]
Siehe das Agorameter zum Beispiel für den 08. und 09.06.2016 mit den historischen deutschen Stromerzeugungsdaten,

https://www.agora-energiewende.de/de/themen/-agothem-/Produkt/produkt/76/Agorameter/

[3.3.2.2d]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/

Beispiel eines täglichen Standardlastprofils in KW eines privaten Haushaltes auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil H0

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofil_Haushalt.xls

[3.3.2.2e]
Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

3.3.2.3 Stromspeicherverluste von Industrie und Verwaltung

[3.3.2.3a]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in kW für Gewerbe allgemein auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil G0 –

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofile_Gewerbe.xls

[3.3.2.3b]
NEW Netz GmbH 2015:

https://www.new-netz-gmbh.de/downloadcenter/
Beispiel eines täglichen Standardlastprofils in kW für Gewerbe 8.00 – 18.00 Uhr auf Viertelstundenbasis im Wochentag- und Jahreszeitenvergleich, 2015, Lastprofil G1

https://www.new-netz-gmbh.de/fileadmin/new-netz-gmbh_de/Lastprofile_Gewerbe.xls
3.3.2.4 Stromspeicherverluste durch die saisonale Speicherung

[3.3.2.4a]
Potsdam-Institut für Klimaforschung: Sonnenscheindauer

https://www.pik-potsdam.de/services/klima-wetter-potsdam/klimazeitreihen/sonnenscheindauer

[3.3.2.4b]
Aus dem IWR-Windertragsindex Küstengebiete 2010-2014 und IWR-Windertragsindex Binnenland 2010-2014 als prozentuale Veränderung gegenüber dem monatlichen Jahresdurchschnitt berechnet:

http://www.iwr.de/wind/wind/windindex/index15_5jahre.htm

[3.3.2.4c]
Fraunhofer ISE: Aktuelle Fakten zur Photovoltaik in Deutschland Fassung vom 22.4.2016, Seite 38

https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf
(aus Bruno Burger, Stromerzeugung aus Solar- und Windenergie im Jahr 2014,

http://www.ise.fraunhofer.de/de/daten-zu-erneuerbaren-energien
Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE)

[3.3.2.4d]
Berechnet mit folgenden Volllaststundenzahlen:
Photovoltaik. 940 siehe

https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf

Seite 44 onshore Windkraftanlagen: 1600 siehe

http://windmonitor.iwes.fraunhofer.de/windmonitor_de/3_Onshore/5_betriebsergebnisse/1_volllaststunden/
offshore Windkraftanlagen: 3900 siehe

https://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/offshore-windenergie,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

[3.3.2.4e]
Bundesverband der Deutschen Energie- und Wasserwirtschaft: Monatliche Stromerzeugung in Deutschland 2015

https://www.bdew.de/internet.nsf/id/815BDDFE265716ACC1257F020058C4BD/$file/Stromerzeugung%20insgesamt%20monatlicher%20Vergleich%202014_2015%20online_o_monatlich_Ki_20042016.pdf

Die Monatswerte wurden auf einen Stromverbrauch von 1285 TWh linear hochgerechnet.

[3.3.2.4f]
https://www.wbu.de/pdf/positionen/2014-07-Wirtschaftsbeirat-Zahlen-Fakten-Strom-2014.PDF; Seite 23
Zur Druckluftkavernenspeicherung siehe das ADELE-Projekt von RWE:

http://www.dlr.de/Portaldata/1/Resources/standorte/stuttgart/Broschuere_ADELE_1_.pdf
Umweltbundesamt: „Integration von Power to Gas/Power to Liquid in den laufenden Transformationsprozess“, März 2016, Abbildung 4, Seite 14

http://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/integration_von_power_to_gaspower_to_liquid_in_den_laufenden_transformationsprozess_web_0.pdf
oder auch ein Wirkungsgrad von 70 Prozent in Fraunhofer ISE: „Aktuelle Fakten zur Photovoltaik in Deutschland“, Fassung vom 25.12.2015, Seite 72, Abbildung 60

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien-und-positionspapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland

[3.3.2.4g]
Pressemitteilung der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) vom 25.04.2016:

https://www.bgr.bund.de/DE/Gemeinsames/Oeffentlichkeitsarbeit/Pressemitteilungen/BGR/bgr-2016-04-25_salzstrukturen_speicher_erneuerbare-energien.html

Energiespeicher – Forschungsinitiative der Bundesregierung: „Potenzial von Kavernen vorhersagen“:

http://forschung-energiespeicher.info/wind-zu-wasserstoff/projektliste/projekt-einzelansicht/74/Potenzial_von_Kavernen_vorhersagen/
Die Ergebnisse des Forschungsprojektes „InSpEE“ können im Geoviewer der BGR unter folgenden Links abgerufen werden:

https://geoviewer.bgr.de/mapapps/resources/apps/geoviewer/index.html?lang=de&tab=geologie&layers=geologie_inspee_salzstrukturen

[3.3.2.4h]
„Verbesserte Integration großer Windstrommengen durch Zwischenspeicherung mittels CAES“ – Wissenschaftliche Studie gefördert durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 02. Februar 2007, Seite 26

http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/Zusatzinfos/2007-05_Abschlussbericht.pdf
[3.3.2.4i]
Gutachten des „Runden Tisches Energiewende Niedersachsen“: „Szenarien zur Energieversorgung in Niedersachsen im Jahr 2050“, April 2016-04-25

http://www.umwelt.niedersachsen.de/download/106468

Bundesanstalt für Geowissenschaften und Rohstoffe – Salzkavernen:

https://www.bgr.bund.de/DE/Themen/Endlagerung/Geotech_Sicherheit/Salzkavernen/salzkavernen_inhalt.html

3.3.2.5 Stromspeicherverluste der Infrastrukturspeichern

3.3. Rohstoffverfügbarkeit für die Wärme- und Stromspeicherung

3.3.1. Rohstoffverfügbarkeit für die Wärmespeicherung

3.3.2. Rohstoffverfügbarkeit für die Stromspeicherung

3.3.2.1 Stromspeicherbedarf im Bereich Mobilität

[3.3.2.1a]
Statistik des Kraftfahrt-Bundesamtes:

http://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Groessenklassen/2015_b_groessenklassen_lkw_dusl.html?nn=662728

[3.3.2.1b]

Die Berechnung erfolgte nach den in der folgenden Tabelle zusammengefassten Annahmen und Literaturzahlen:

Anzahl [Mio.] PKW 45,1
Reichweite [km] 600
Verbrauch [kWh/100km] 15 (*)
Speichergröße [kWh] 90
Gesamtspeicher [TWh] 4,06 (*)

http://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Groessenklassen/2015_b_groessenklassen_lkw_dusl.html?nn=662728

LKW (Zulassungszahlen 01.01.2015):
bis 3,5t: 2,176 600 30 (*) 180 0,39
(*)
http://www.dlr.de/Portaldata/1/Resources/portal_news/newsarchiv2010_3/Shell_Lkw_Studie_FIN_17042010.pdf, Seite 24

3,5t bis 7,5: 0,249 500 45 (geschätzt) 225 0,06
7,5t bis 12t: 0,08 500 63 (geschätzt) 315 0,03
12t bis 20t: 0,073 300 88 (*) 264 0,02 (*)

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/6626/maerkte-amp-trends/elektro-lkw-bei-meyer-logistik-der-neun-liter-

über 20t: 0,123 500 120 (geschätzt nach *) 600 0,07
(*)

https://www.max-boegl.de/informationen/pressemeldungen-ueber-max-boegl/600-01-09-2015-lastauto-omnibus-schwerlast-zugmaschinen-in-zwei-leistungsklassen/file.html

und Verband der Automobilindustrie: „Das Nutzfahrzeug – umweltfreundlich und effizient“

https://www.vda.de/dam/vda/publications/Das%20Nutzfahrzeug/1221663368_de_234327962.pdf, Seite 8

(Zulassungszahlen 01.01.2016):
Zugmaschinen: 2,141 600 130 (geschätzt) 780 1,67
Busse: 0,078 300 120 (*) 360 0,03
(*) http://www.proterra.com/product-tech/product-portfolio/#terravolt
Krafträder: 4,228 200 13 (*) 26 0,11
(*) http://www.zeromotorcycles.com/de/zero-s-specs; ZERO S zf13.0
sonstige KFZ: 0,228 200 120 (*) 240 0,05
Summe: 6,49

[3.3.2.1c]
http://de.statista.com/statistik/daten/studie/244999/umfrage/weltweiter-pkw-und-nutzfahrzeugbestand/
[3.3.2.1d]
http://www.pcwelt.de/news/Durchbruch-Lithium-Ionen-Akku-mit-zehnfacher-Laufzeit-entwickelt-134039.html
https://www.akku.net/magazin/lithium-ionen-akku-zehn-spannende-fakten-zur-herstellung-des-energiespeichers/

[3.3.2.1e]
http://www.quetzal-leipzig.de/lateinamerika/bolivien/interview-mit-robert-sieland-lithium-salar-de-uyuni-bolivien-t1-19093.html
[3.3.2.1f]
https://de.wikipedia.org/wiki/Lithium-Ionen-Akkumulator
[3.3.2.1g]
http://de.statista.com/statistik/daten/studie/159921/umfrage/verwendungszwecke-von-lithium-auf-dem-weltmarkt/,

2016 oder Karlsruher Institut für Technologie:
Die Problematik der Rohstoffverfügbarkeit am Beispiel von Lithium
von Saskia Ziemann, Marcel Weil und Liselotte Schebek, ITAS, Dezember 2010

https://www.tatup-journal.de/tatup103_ziua10a.php

[3.3.2.1h]
[Energiedaten des Bundesministeriums für Wirtschaft und Energie Tabelle 6a, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html]

[3.3.2.1i]
Umweltbundesamt:

http://www.umweltbundesamt.de/themen/verkehr-laerm/emissionsstandards/binnenschiffe

http://www.value-analyse.de/service/value-news/lithium-das-weisse-gold-der-anden.html

3.3.2.3 Stromspeicher im Bereich Private Haushalte

[3.3.2.2a]
[Energiedaten des Bundesministeriums für Wirtschaft und Energie Tabelle 1, Stand 05.04.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html]

3.3.2.4. Stromspeicher im Bereich Infrastruktur

3.3.2.5. Saisonale Stromspeicher

[3.3.2.5a]
Die Abschätzung:
Zurzeit beträgt die jährliche Bruttostromerzeugung in Deutschland ca. 600 TWh. Die Spitzenlast betrug im Jahr 2015 82,735 GW (Siehe das Agorameter für den 12.01.2015,

https://www.agora-energiewende.de/de/themen/-agothem-/Produkt/produkt/76/Agorameter/)
Die jährliche Stromerzeugung bei einer nachhaltigen Energieversorgung wurde zu 1191 TWh abgeschätzt. Damit kann in Zukunft von einer jährlichen Spitzenlast von ca. 163 GW ausgegangen werden.

[3.3.2.5b]
http://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
und
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_2015.xlsx;jsessionid=4E11D160148D3CF2E1C7EEAAABA43EDD?__blob=publicationFile&v=5

Alle Wasserkraftanlagen in Deutschland haben eine installierte Leistung von 4100 MW. Etwa 2500 MW entfallen dabei auf Pumpspeicherwerke und nur 1632 MW auf Laufwasserkraftwerke. Nennenswert ist noch die Erzeugung von Elektroenergie aus Grubengas. In Deutschland – Sommer 2015 – existieren 820 Einzelanlagen mit einer Gesamtleistung von 625 MW. Es steht also eine installierte Leistung von 2,257 GW zur Verfügung. Da auch die Erzeugung Strom aus Laufwasserkraftwerken schwankt wird eine gesicherte Leistung von 1.8 GW, 80 %, zugrunde gelegt. Dazu kommen noch gesicherte Leistungen aus Biogas, Biomasse und KWK Anlagen von 12 GW. Die Spitzenlast in Deutschland beträgt bis zu 82 GW.

 

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Das Orangebuch der Energiepiraten – meine Sicht – Teil 3

2. Energiebedarf einer nachhaltigen Gesellschaft

Wie groß wird in der Zukunft der Energiebedarf einer nachhaltigen Gesellschaft in Deutschland sein? Dazu werden im Folgenden die Sektoren Verkehr, private Haushalte, Wirtschaft und Verwaltung sowie der deutsche Anteil am internationalen See- und Flugverkehr untersucht. Doch zunächst eine grundsätzliche Betrachtung der Energiewende.

2.1. Energie neu denken

Nach der Einschätzung der Bundesregierung „…beruht die Energiewende darauf, die Energieeffizienz zu steigern, den Energieverbrauch zu senken und die erneuerbaren Energien weiter auszubauen… [2.1b] Energieeffizienz bedeutet, die verfügbare Energie besser zu nutzen. [2.1c]

Abgesehen von der begrifflichen Schwäche der Bundesregierung, ausgerechnet unter Vorsitz einer Physikerin: Für mich bedeutet Energiewende einfach: Wir steigen von fossilen Energieträgern auf erneuerbare Energieträger um und stellen Energie bevorzugt dort bereit, wo sie gebraucht wird. Gelegentlich in zentralen Großkraftwerken, aber hauptsächlich mit dezentralen Generatoren. Wir erzeugen Strom und Wärme mit Millionen von Photovoltaikanlagen und Solarkollektoren auf Wohnhäusern, Industriebauten oder öffentlichen Gebäuden. Wir nutzen den Wind und die Erdwärme mit hunderttausenden Windkraftanlagen und Wärmepumpen. Und es gibt noch viel mehr Beispiele.

Dabei gilt es in erster Linie Sonneneinstrahlung und Wind umwelt- und bürgerverträglich zu nutzen. Beides steht im Überfluss und kostenlos zur Verfügung! Deshalb wäre es eigentlich nicht notwendig, unseren Energiebedarf zu senken. Doch um die Energieversorgung komplett auf erneuerbare Energieträger umzustellen, müssen noch so viele zusätzliche Anlagen gebaut werden, dass es sinnvoll ist, nur die effizientesten Technologien einzusetzen und Strom und Wärme nicht unnötig zu vergeuden.

Mit dem „Nationalen Aktionsplan Energieeffizienz“ will die Bundesregierung erreichen, „…den Primärenergieverbrauch bis zum Jahr 2020 gegenüber 2008 um 20 Prozent zu senken und bis 2050 zu halbieren.“ [2.1b]

Wenn jetzt eine Senkung des – korrekt bezeichnet – Primärenergiebedarfs um kurzfristig 20% bzw. 50% Prozent als gesellschaftliches Ziel ausgegeben wird, verschleiert es die eigentliche Herausforderung. Die erforderliche gesellschaftliche Aufgabe bleibt vage: Zum einen ist der Primärenergieeinsatz, wie die im letzten Absatz genannten Zahlen zeigen, durch schlechte Effizienzzahlen (das Verhältnis aus nutzbarer Energie zu eingesetzter Energie in einer technischen Anlage) [2.1c] und Transportverlusten bei der Bereitstellung als Endenergie geprägt. So betrug zum Beispiel der Wirkungsgrad von Stromerzeugungsanlagen mit fossilen Brennstoffen im Jahr 2014 nur 46,0 Prozent (die Effizienz war noch viel schlechter…). Für die Endverbraucher wurde so weniger als die Hälfte der eingesetzten Energie in Form von Strom nutzbar gemacht. [2.1e] Zusätzlich entstehen bei der Stromverteilung Verluste zwischen 6 und 7 Prozent. [2.1f] Es ist richtig, dass eine Verbesserung der Wirkungsgrade sowie eine Effizienzsteigerung in der privaten und industriellen Energienutzung den Primärenergiebedarf senkt. Doch leider sagt das erstens nichts darüber aus, ob auch der Anteil an der Nutzung fossile Energieträger zurückgeht. Zweitens macht die Betrachtung eines Primärenergiebedarfs keinen Sinn mehr, wenn ausschließlich die im Überfluss vorhandene Energie von Sonne und Wind genutzt wird: Zum Beispiel liegt der Wirkungsgrad von PV-Modulen zur Stromerzeugung aus Sonnenlicht heute im Bereich von nur 20 Prozent (plus minus 4%). Demzufolge ist die rechnerisch nutzbare Primärenergie fünfmal so groß wie die erzeugte Strommenge aus den Solarzellen. Je mehr Photovoltaikmodule eingesetzt werden, desto mehr würde rechnerisch der Primärenergieeinsatz in Deutschland steigen, die Kennzahl „Primärenergieverbrauch“ verliert also an Aussagekraft…abgesehen davon, dass der Begriff physikalisch unsinnig ist. Sigmar Gabriel hat es vor laufender Kamera bei einer energiepolitischen Veranstaltung ganz richtig zugegeben: Wir Politiker verstehen von den Dingen, über die wir sprechen gar nicht genug, um das Richtige zu tun…

Verabschieden wir uns also von der Betrachtung der Primärenergie. Die gesellschaftliche Aufgabe ist es, so schnell wie möglich auf den Einsatz von fossilen Brennstoffen zur Strom- und Wärmeerzeugung und beim Transport von Personen und Gütern zu verzichten und als Energiequelle hauptsächlich Sonne und Wind zu nutzen!

2.2. Mobilität ohne fossiles Mineralöl

Im Verkehrsbereich wird in Deutschland am meisten Endenergie eingesetzt. Im Jahr 2014 waren es 731 TWh oder 30,4% der Endenergie. [2d] Hiervon wurden 92,8% (678 TWh) aus Mineralöl bereitgestellt. [2d] Das muss so nicht bleiben: Wir können auf fossiles Mineralöl als Energieträger vollständig verzichten!

Der Elektromotor besitzt gegenüber dem Verbrennungsmotor einen mehr als 3,5-fach höheren Wirkungsgrad. [2.2a] Schon vor langer Zeit wurden elektrifizierte Eisenbahnen, Omnibusse und PKW gebaut, um Personen und Güter zu transportieren. U- und S-Bahnen fahren seit Jahrzehnten elektrisch. Elektrobusse mit Oberleitung waren schon vor 50 Jahren weltweit im Einsatz. In jüngster Zeit sind nun auch in Deutschland Batteriebusse wieder erfolgreich im Linienverkehr. [2.2b], [2.2c] Der chinesische Batteriehersteller „Build Your Dream“ (BYD) entwickelt einen Linienbus mit einer Reichweite ca. 250 Kilometern und die amerikanische Firma Proterra Inc. bietet einen Elektrobus mit einer noch größeren Reichweite an. [2.2d] Neben dem Schienen-Fernverkehr kann auch der öffentliche Nahverkehr vollelektrisch betrieben werden. Das gilt auch für den Individualverkehr. Schon 1996 brachte der amerikanische Autokonzern General Motors das batteriebetriebene Elektroauto EV1 mit einer Reichweite von bis zu 300 Kilometern als Leasingmodell auf den Markt. Innerhalb kurzer Zeit wurde der EV1 zu einem „Kult-Auto“, doch General Motors stoppte die Produktion und holte die 1117 produzierten Autos zur Verschrottung zurück. [2.2e] Deutsche Automobilhersteller bieten bisher nur Elektro-PKWs mit einer Reichweite von wenig über 100 km an. In China baut und verkauft die Daimler AG bereits zusammen mit dem chinesischen Batteriehersteller BYD in China den Mittelklasse-PKW „Denza“. Er fährt mit einem vollelektrischen Antrieb und einer Reichweite von mehr als 300 Kilometer. [2.2f] In Europa wird jetzt von der Fenecon GmbH der „BYD E6″ mit einer Reichweite von bis zu 400 Kilometern angeboten [2.2g] Nach der Limousine Modell S mit einer Reichweite von bis zu 630 Kilometern und dem Model X als Placebo für den verunsicherten SUV-Fahrer hat der amerikanische Autobauer Tesla nun auch seinen Mittelklassenwagen „Model 3“ vorgestellt. Mit einer Reichweite von circa 350 Kilometern soll er ab Ende 2017 für ca. 35.000 Euro verkauft werden. [2.2h] In einem Interview im September 2015 kündigte der Daimler-Entwicklungschef Thomas Weber an, dass bald ein „Tesla-Gegner“ auf den Markt kommt. Daimler arbeite an einem intelligenten Konzept für ein hochattraktives E-Fahrzeug mit 400 bis 500 Kilometern Reichweite [2.2i]. Auch der VW-Entwicklungsvorstand Dr. Neußer hielt bereits im Januar 2014 in einem Interview die Entwicklung von Batterien, die eine Reichweite von 500 Kilometer erlauben, bis zum Ende dieses Jahrzehnts für möglich. [2.2j] Die nächste Generation des Nissan LEAF wird eine ähnliche Reichweite bieten. [2.2k]

Der Güterverkehr könnte nahezu vollständig auf eine elektrifizierte Bahn wechseln, sofern einige wesentliche Voraussetzungen geschaffen werden:

– Mindestens zweispuriger Ausbau aller Bahnstrecken
– Vollständige Elektrifizierung aller Bahnstrecken
– Eine neue Generation von Güterwaggons mit Stromabnehmern, elektrischen Radscheibenantrieben mit Rückeinspeisung der Bremsenergie,
– eigenen Batteriespeichern an jedem Waggon, (last mile autonomous drive)
– Neu- oder Wiederanschluss von Gewerbegebieten
– Langfristige Umrüstung des Schienengüterverkehrs auf subterrane Infrastruktur

Batteriebetriebene LKWs und Nutzfahrzeuge können weite Teile die regionale Verteilung der Güter erledigen. Im Rahmen des Projektes „Elektromobilität in Modellregionen“ der Bundesregierung wurde in Berlin der Einsatz elektrisch angetriebener Nutzfahrzeuge im städtischen Lieferverkehr bereits getestet. In Stuttgart hat ein Praxistest von batteriebetriebenen Sechstonner-LKWs begonnen und ein Lebensmittelspediteur zieht nach zehn Monaten Einsatz seines Elektro-LKWs eine sehr positive Bilanz [2.2l]

Der echte Knaller aber kommt von der RWTH Aachen und der Deutschen Post AG: Die bauen uns setzen bereits Elektrotransporter in Serie ein. Eine Eigenentwicklung ohne die deutsche Automobilindustrie. An etlichen Verteilzentren entstehen bereits Ladestationen. Leider nicht öffentlich.

Eine umfangreiche Liste von Elektro-Nutzfahrzeugen und Elektro-Nutzfahrzeug-Prototypen findet im Anhang unter dem Literaturhinweis [2.2m] Für den Gütertransport auf Fernstraßen wurde von der Siemens AG in einem Forschungsprojekt das Konzept eines Oberleitungs-LKW entwickelt und die technische Machbarkeit nachgewiesen. [2.2n] Auch der Einsatz von nach dem „Power to Liquid“-Verfahren hergestelltem synthetischen Kraftstoff ist eine Option. [2.2.o]

Bisweilen wird immer noch das Konzept des Einsatzes von wasserstoffangetriebenen Verkehrsmitteln vorangetrieben. Doch sowohl Transport als auch Lagerung von Wasserstoff sind jedoch technisch wesentlich aufwendiger als Stromtransport oder Stromspeicherung der Elektrofahrzeuge. Es müsste zudem eine anspruchsvolle Wasserstoff-Infrastruktur geschaffen werden, die ein Vielfaches der Kosten einer flächendeckenden Struktur elektrischer Ladesäulen verursacht. Der Wartungsaufwand von wasserstoffbetriebenen Fahrzeugen ist wesentlich höher als der von batteriebetriebenen, der Wirkungsgrad eines Wasserstoffmotors liegt nur wenig über dem eines Benzin- oder Dieselmotors.[2.2p] Zwar kann Wasserstoff durch ein Elektrolyseverfahren mit Strom aus Erneuerbaren Energien umweltfreundlich erzeugt, dann in einer Brennstoffzelle wieder zum Antrieb eines Elektromotors genutzt werden, doch liegt der Wirkungsgrad eines solchen Fahrzeugs zur Zeit in der Größenordnung von höchstens einem Drittel gegenüber dem eines batteriebetriebenen Elektrofahrzeugs. [2.2q] Das Argument einer größeren Reichweite von Fahrzeugen mit Brennstoffzellen wird bereits in wenigen Jahren durch die aktuellen Weiterentwicklungen in der Batterie- und Kondensatorentechnik [2.2r] nicht mehr relevant sein.

Für den Schiffsverkehr wird intensiv an Möglichkeiten zur Energieeinsparung unter anderem durch den Einsatz von Windströmung nutzenden Flettner-Rotoren und einer Schiffsroutenoptimierung geforscht. [2.2s]. Die Verlagerung von Güterferntransporten auf ein hochleistungsfähiges Schienensystem bietet allerdings effizientere Optionen. Die Leichtbauweise von Frachtschiffen ähnlich wie bei Yachten mit einer deutlichen Gewichtsreduzierung und einer entsprechend größeren Zuladung ist für die Zukunft denkbar. Es ist heute bereits deutlich erkennbar, in welchem Umfang Elektromotoren als Schiffsantrieb (zum Beispiel für kurze Fährfahrten oder den küstennahen Personen- und Gütertransport [2.2t]) zukünftig eingesetzt werden. Das mit hohen Schadstoffemissionen verbundene Schweröl als Kraftstoff muss auf jeden Fall kurzfristig ersetzt werden. Eine Möglichkeit für die Zukunft ist der Einsatz von aus erneuerbarem Strom und CO2 nach dem „Power to gas“- oder „Power to Liquid“-Verfahren hergestellter Kraftstoff. [2.2v] Auch die Herstellung von flüssigem Kraftstoff aus Algen ist möglich. Im Forschungsprojekt „Aufwind“ des Bundesministeriums für Ernährung und Landwirtschaft wird aktuell die Optimierung einer Ölproduktion aus Algen untersucht. [2.2w]. Darüber hinaus bieten innovative Konzepte wie die „Neue Seidenstraße“ oder die mögliche Unterquerung der Beringstraße per Bahn immense und effizientere Verlagerungsmöglichkeiten für den internationalen Güterverkehr in Containern vom Schiff auf neue, vollelektrifizierte Schienenwege.

Im innerdeutschen Flugverkehr wurden im Jahr 2014 als Turbinenkraftstoff 101 TWh, beziehungsweise 13,8% der Energie des Verkehrsbereiches eingesetzt. [2.2x] Mit einem von der Siemens AG entwickelten Elektromotor hat ein Kunstflugzeug bereits erfolgreiche Testflüge absolviert. Zusammen mit dem Airbus-Konzern arbeitet Siemens an der Entwicklung eines zunächst teilelektrischen und später dann rein-elektrisch angetriebenen Linienflugzeuges mit bis zu 100 Passagieren [2.2y] Weiterhin ist auch im Flugverkehr der Einsatz von Kraftstoffen aus dem „Power to Liquid“-Verfahren oder aus Algen [2.2z] eine Alternative.

Bereits heute steht eine Vielzahl von energiesparenden Technologien zur Verfügung. Durch Elektroantriebe im Verkehr, durch weitere Effizienzsteigerung der Antriebstechnik und durch Optimierung einschließlich einer Reduzierung der Warenströme innerhalb Deutschlands scheint es uns damit aus heutiger Sicht möglich, den zukünftig erforderlichen Energiebedarf für den Verkehrsbereich auf ein Drittel des heutigen Bedarfs zu senken: Also von 731 TWh auf nur noch 244 TWh. Zu den Möglichkeiten gehören auch neue Konzepte wie einen massiven Ausbau des Schienenverkehrs auf zwei getrennten Systemen (Güter und Personen) und allein aus Platzgründen rein unterirdisch in Angriff zu nehmen.

Für den kurzfristigen Erfolg bei der Senkung der Emissionen und des Energieträgereinsatzes besteht die beste weil einfachste Option jedoch in der rechtlichen und technisch nicht umgehbaren Begrenzung der Höchstgeschwindigkeiten durch Abgleich des Motormanagements und situativer Leistungssteuerung über die Daten der Navigationssysteme und der Verkehrsregelanlagen. Das ist sicherer, einfacher, effektiver und nachhaltiger als Phantastereien vom vollständig autonomen Fahren.

2.3. Behaglich Wohnen mit wenig Energie

Der Wohngebäudebestand in Deutschland setzt sich wohnflächenmäßig zu etwa 40% aus Mehrfamilienhäusern und 60% aus Ein- und Zweifamilienhäusern zusammen. [2.3a]

Bestehende Energieeffizienzhäuser [2.3b] – das sind Häuser mit einem geringen Energiebedarf durch besondere Baukonstruktion und Dämmung zeigen schon heute, wie sich die Energie in Wohnimmobilien ohne fossile Energieträger bereitstellen lässt: Die Photovoltaik [2.3c] zur Stromerzeugung mit Sonnenlicht, die Solarthermie [2.3d] als Teil der Warmwasserversorgung und die Nutzung natürlicher Wärme und Kälte durch Eisspeicher vermittels Wärmepumpen [2.3f] für die Raumheizung oder auch zur Kühlung der Wohnräume. Eine gute Wärmedämmung und der Einsatz von effizienten Haushaltsgeräten Beleuchtung mit LED-Technologie [2.3g] sorgen zusätzlich für einen insgesamt geringen Energiebedarf.

Private Haushalte in Deutschland standen im Jahr 2014 für einen Energiebedarf von insgesamt 615 TWh. Das waren fast 26% des gesamten Endenergieeinsatzes in diesem Jahr. [2.3h] Bezogen auf die bewohnte Wohnfläche von 3,43 Milliarden m² im Jahr 2014 [2.3i] errechnet sich damit ein durchschnittlicher Energieeinsatz von 179 kWh pro m². Im Rahmen des „Modellvorhabens Effizienzhäuser“ wurden bisher 63 Bestandsimmobilien energetisch saniert und ausgewertet. Im Mittel ergab sich nach der Sanierung ein jährlicher Endenergiebedarf von nur noch 54 kWh pro Quadratmeter. [2.3j] Der Wert bei Neubauten liegt noch darunter. Die Steigerung sind „Plusenergiehäuser“, die mehr Energie erzeugen, als sie im Jahr benötigen. Für die Zukunft ist ein durchschnittlicher Energiebedarf von 50 kWh pro Jahr und Quadratmeter sicherlich nicht zu optimistisch geschätzt. Berücksichtigt man zusätzlich eine Erhöhung der Wohnfläche in Deutschland um 15%, so errechnet sich für private Haushalte ein jährlicher Energieeinsatz von dennoch nur 210 TWh, mit andern Worten eine drastische Endenergieeinsparung von 66%.

2.4. Auch Wirtschaft und Verwaltung werden sparen

Die Bereiche „Industrie“ und „Gewerbe, Handel, Dienstleistungen“ (GHD) bezogen im Jahr 2014 zusammen 1.058 TWh, das waren 44 Prozent des deutschen Endenergiebedarfs. [2.4a]. Am 14. Oktober 2012 sprach der damalige Bundesumweltminister Peter Altmaier in der ARD-Sendung „Bericht aus Berlin“ von einem Energieeinsparpotential deutscher Industrieunternehmen von 30%. In der Studie „Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien Einsparpotenziale, Hemmnisse und Instrumente“ der Fraunhofer-Gesellschaft [2.4b] wurden 200 Maßnahmen zur Energieeinsparung untersucht: Bei mehr als 90% Prozent der Einsparmaßnahmen würden den Unternehmen durch die eingesparten Energiekosten keine zusätzliche Kosten entstehen. Es könnten oft sogar noch zusätzliche Gewinne erzielt werden. Die möglichen Maßnahmen würden jedoch häufig nicht umgesetzt, da die Unternehmer negative Auswirkungen auf die Produktionsabläufe und die Produktqualität befürchteten. Auch würde häufig gefordert, dass sich eine Investition zur Energieeinsparung in weniger als drei Jahren „rechne“, was jedoch oft nicht erreicht werde. [2.4c]

Auch die „Deutsche Energie-Agentur“ verweist 2013 auf hohe Energieeinsparpotentiale in Industrie und Gewerbe bei

Beleuchtung: von 70%
Druckluft: von 50%
Pumpensysteme: von 30%
Kälte- und Kühlwasseranlagen: von 30%
Wärmeversorgung: von 30%
Lüftungsanlagen: von 25%
[1.3d]

Das „Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit“ schätzt aktuell das Energieeinsparpotential in den Bereichen „Industrie“ und „Gewerbe“ auf bis zu 40%. [2.4e] Rechtliche Vorgaben und Förderprogramme halfen und helfen Unternehmen diese Effizienzpotentiale zu erschließen: Ökodesign-Richtlinie, Förderprogramme der Klimaschutz-Initiative des Bundesumweltministeriums, das ERP-Umwelt- und Energieeffizienzprogramm der KfW-Bank, dazu verschiedene Informationskampagnen. Die Einführung von Energiemanagementsystemen (zum Beispiel gemäß der Norm DIN EN ISO 50001) ermöglichen nahezu immer insbesondere in Unternehmen wirtschaftliche Effizienzpotenziale zu erkennen und zu erschließen. [2.4f]

Strukturelle wirtschaftliche Veränderungen mit ihren möglichen Energieeinsparungen und zusätzlicher Energiebedarf durch Einsatz neuer Technologien sind über einen längeren Zeitraum nur sehr schwer zu prognostizieren. Es lässt sich aber sagen, dass ein Umdenken hin zu möglichst langlebigen Verbrauchsgütern zu weniger Energieeinsatz in Produktionsprozessen führen wird. Im Tagungsband zur Jahrestagung 2015 erwartet der „Forschungsverbund Erneuerbare Energien“ ein Energieeinsparpotential von nur 14 % des gesamten Endenergiebedarfs der Sektoren Industrie und GHD. [2.4g] Ich bin optimistischer, da in Industrieunternehmen auch ein erhebliches Einsparpotential durch die Optimierung von Produktionsstraßen und -abläufen besteht. [2.4h] Für die weiteren Abschätzungen gehen wir daher von einer zukünftigen Reduzierung des Endenergiebezugs im Bereich Wirtschaft und Verwaltung in Höhe von 30% und einem zukünftigen Verbrauch von 741 TWh aus. Allerdings wird sich dieser Effekt nicht in der gewünschten Zeitspanne von allein einstellen, solange die Politik die Wirtschaft nicht klar in die Pflicht nimmt und die Nutzung von verbilligtem Strom aus Atomkraft und fossilen Brennstoffen volkswirtschaftlich konsequent und gerecht beendet. Ein Staat darf Projekte der Daseinsvorsorge gern finanzieren, aber keinesfalls mehr durch Übernahme der Investitionen oder einseitige Vergütungsgarantien auf Kosten der Steuerzahler bestimmte Sektoren oder Produzenten protegieren.

Insgesamt ergibt sich so für die Bereiche Verkehr, private Haushalte, Wirtschaft und Verwaltung zusammen ein Endenergieeinsatz von 1.194 TWh. Das sind nur noch 49,7% der im Jahr 2014 in Deutschland aufgewendeten Endenergie. Ein ähnliches Einsparungspotential errechnet auch das Umweltbundesamt in seiner Studie „Treibhausgasneutrales Deutschland im Jahr 2050“, wenn es von einer Halbierung des Endenergieeinsatzes des Jahres 2010 (2.588 TWh) im Jahr 2050 ausgeht. [2.4i]

2.5. Anteil am internationalen See- und Flugverkehr

Abschließend wird der Anteil der deutschen Volkswirtschaft am Energiebedarf des internationalen See- und Luftverkehrs betrachtet. Hier folgen wir einer Abschätzung aus der Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes:

Für den internationalen zivilen Luftverkehr geht das Umweltbundesamt von einer jährlichen Effizienzsteigerung von 2% jährlich aus. Das gesetzte Ziel der „International Civil Aviation Organization“ (Internationale Zivilluftfahrtorganisation). [2.5a] Auch für die Seeschifffahrt wird eine erhebliche Effizienzsteigerung bis zum Jahr 2050 von insgesamt 39% (im Vergleich zum Jahr 2007) angesetzt. [2.5b] Für den Personenverkehr rechnet das Umweltbundesamt mit einem Endenergiebedarf im Jahr 2050 von 266 TWh, für den Güterverkehr von 185 TWh und für den gesamten Verkehrsbereich inklusive der Seeschifffahrt mit einem Bedarf von 625 TWh. [2.5c] Es ergibt sich also ein „Aufschlag“ von 174 TWh für den Anteil am internationalen Verkehr.

Bei diesem zusätzlichen Energiebedarf ist aber noch nicht berücksichtigt, dass dann ein Teil der Kraftstoffmenge unter Umständen nicht aus Biomasse (zum Beispiel Algen), sondern synthetisch aus erneuerbarem Strom erzeugt wird. Der künstliche Kraftstoff aus dem „Power-to-Liquid-Verfahren“ bietet am Ende eine Effizienz von bestenfalls ca. 25% Prozent [2.5d] wird also dafür die vierfache elektrische Energie benötigen. Nimmt man an, dass die Hälfte der Kraftstoffe für den internationalen Verkehr aus Biomasse stammt und die andere Hälfte synthetisch mit erneuerbarem Strom hergestellt wird, so erhöht sich dieser Aufschlag um 100 Prozent auf ca. 350 TWh.

Abschließend unsere Abschätzung des zukünftigen Endenergiebedarfs in einer Übersicht:

Mobilität: 244 TWh
Private Haushalte: 210 TWh
Wirtschaft und Verwaltung: 741 TWh
Anteil am internationalen Verkehr: 350 TWh.

Zusammen ergibt sich also ein für Deutschland von Endenergie-Bedarf von 1.550 TWh. 2014 waren es noch 2.404 TWh.

Der (End-)Energie-Einsatz in Deutschland lässt sich nahezu halbieren !

Literaturverzeichnis und Anmerkungen:

2. Energieverbrauch einer nachhaltigen Gesellschaft

2.1. Energie neu denken

[2.1a]
Mittelwert der ausgewerteten Studien, siehe Bericht 2011 des „Weltklimarats“ IPCC (Intergovernmental Panel on climate change), der von der Weltorganisation für Meteorologie (WMO) und dem Umweltprogramm der Vereinten Nationen (UNEP) 1988 gegründet wurde:

http://srren.ipcc-wg3.de/ipcc-srren-generic-presentation-1
http://cms.srren.ipcc-wg3.de/report/srren-spm-fd4/at_download/file

(jeweils aufgerufen am 3.4.2016)

[2.1b]
Die Bundesregierung hat einen „Nationalen Aktionsplan Energieeffizienz“ mit dem Ziel entwickelt, den Primärenergie-Verbrauch (siehe

http://www.bmwi.de/DE/Mediathek/publikationen,did=672756.html)

durch Effizienzsteigerungsmaßnahmen der Verbraucher, der Industrie und der Verwaltung bis zum Jahr 2020 gegenüber dem Jahr 2008 um 20% zu senken und bis 2050 zu halbieren:
http://www.bmwi.de/DE/Mediathek/publikationen,did=672756.html

Die zugehörige Website des Bundesministeriums für Wirtschaft und Energie:

http://www.bmwi.de/DE/Themen/Energie/Energieeffizienz/nape.html

(aufgerufen am 3.4.2016)

[2.1c]
Duden online, Begriffserklärung „Energieeffizienz“
http://www.duden.de/suchen/dudenonline/Energieeffizienz

siehe die Begriffserklärung (Glossar) der Bundesregierung zum Thema „Energie“ unter anderem mit einer Erklärung der Begriffe „Primärenergie“, „Endenergie“ und „Wirkungsgrad“:
https://www.bundesregierung.de/Content/DE/StatischeSeiten/Breg/FAQ/faq-energie.html

[2.1d]

Der Primärenergie-Verbrauch und Endenergie-Verbrauch im Jahr 2014 in Deutschland: Siehe die Energiedaten (in Petajoule) des Bundesministeriums für Wirtschaft und Energie, Tab. 5 und Tab. 7, Stand 12.1.2016.
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

Die Einheit „Petajoule“ (PJ) entspricht 0,278 TWh:
Energiedaten (in Petajoule) des Bundesministeriums für Wirtschaft und Energie, Tab. 0.2, Stand 12.1.2016.
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.1e]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 8b, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.1f]
Monatsbericht über die Elektrizitätsversorgung
https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/Energie/Erzeugung/Tabellen/BilanzElektrizitaetsversorgung.html
(Aufruf am 13.3.2016)

2.2. Mobilität ohne Mineralöl

[2.2a]
In der Projektbroschüre „Erneuerbar mobil – Marktfähige Lösungen für eine klimafreundliche Elektromobilität“ (Seite 5, Stand April 2012) des Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit wird der Gesamtwirkungsgrad (inklusive der Bereitstellung des Kraftstoffes) beim Ottomotor mit 19 Prozent, beim Brennstoffzellenauto mit 26 Prozent und beim Elektroauto: mit 70 Prozent angegeben.http://www.erneuerbar-mobil.de/de/mediathek/dateien/broschuere-erneuerbar-mobil-2012-dt.pdf

(Aufruf am 13.3.2016)

[2.2b]
siehe z. B. https://de.wikipedia.org/wiki/Oberleitungsbus

(Aufruf am 13.3.2016)

[2.2c]
Die Berliner Verkehrsbetriebe setzten inzwischen ebenfalls vier vollständig elektrisch betriebene Linienbusse ein:

http://www.bvg.de/de/Aktuell/Newsmeldung?newsid=772

und auch in Dresden hat gerade ein Schnelllade-Batteriebus nach einem halben Jahr im Linienbetrieb die Alltagsfähigkeit und die Vorteile eines Batterie-Elektrobusses unter Beweis gestellt:

http://www.pressebox.de/pressemitteilung/vossloh-kiepe-gmbh/Meilenstein-der-Elektromobilitaet-Auszeichnung-fuer-Projekt-SEB-Schnellladung-Elektro-Bus/boxid/752809

(Aufruf am 13.3.2016)

[2.2d]
https://fenecon.de/page/e-mobilitat

sowiehttp://www.wiwo.de/technologie/green/tech/elektro-bus-415-kilometer-mit-einer-akkuladung/13552864.html und http://www.proterra.com/product-tech/product-portfolio/

[2.2e]
Wer brachte das Elektroauto „EV1“ um?
http://www.wattgehtab.com/elektroautos/wer-brachte-das-elektroauto-ev1-um-1893

Warum das Elektroauto sterben musste:https://www.youtube.com/watch?v=Jzn_1y0UtUk

[2.2f]
Automobilproduktion: „Fahrbericht Elektroauto: BYD Denza“, 2.9.2014:

http://www.automobil-produktion.de/2014/09/naegel-mit-koepfen-byd-denza/

(Aufruf am 13.3.2016)

[2.2g]https://fenecon.de/blog/neues-von-fenecon-1/post/elektroautos-von-byd-fenecon-startet-verkauf-des-e6-26

(Aufruf am 17.3.2016)

[2.2h]
Die Vorstellung des Elektroauto „Tesla Model 3“ in den USA am 31.13.2016:
http://www.heise.de/newsticker/meldung/Elektroautos-Tesla-Model-3-kommt-Ende-2017-ab-35-000-US-Dollar-3159967.html und
https://www.youtube.com/watch?v=jPn7qLSwgmk

[2.2i]
auto motor und sport: Interview am 2. September 2015 mit dem Entwicklungschef Thomas Weber der Daimler AG:

http://www.auto-motor-und-sport.de/news/interview-mit-daimler-entwicklungschef-thomas-weber-9952655.html

(Aufruf am 13.3.2016)

[2.2j]
tz „Pläne und Ziele – Pick-Ups? Nichts für VW“, 17.1.2014
http://www.tz.de/auto/vorstand-heinz-jakob-neusser-ueber-plaene-ziele-zr-3319408.html

(Aufruf am 13.3.2016)

[2.2k]
ecemento das Elektroautoportal „Nissan testet Elektroauto mit über 500 Kilometer Reichweite“, 29.6.2015

http://ecomento.tv/2015/06/29/nissan-elektroauto-ueber-500-kilometer-reichweite/

(Aufruf am 13.3.2016)
Eine Reichweite von 500 Kilometer hat der neue „Tesla Roadster“ anscheinend aber bereits übertroffen: „Tesla Roadster: Neues Modell schafft 640 Kilometer“, ComputerBild.de, 2.9.2015

http://www.computerbild.de/artikel/cb-News-Connected-Car-Tesla-Roadster-Neues-Modell-schafft-640-Kilometer-11247487.html

(Aufruf am 13.3.2016)

[2.2l]
Modellregionen Elektromobilität in Deutschland:

http://de.academic.ru/dic.nsf/dewiki/2512063#Berlin-Potsdam

Elektro-Lkw bei Meyer Logistik: Der Neun-Liter-Laster:

http://www.logistra.de/news-nachrichten/nfz-fuhrpark-lagerlogistik-intralogistik/6626/maerkte-amp-trends/elektro-lkw-bei-meyer-logistik-der-neun-liter-LKW

„Stuttgart und das Logistikunternehmen Hermes erproben in einem Flottentest den Einsatz
von batteriebetriebenen Sechstonner-LKW im Betriebsalltag“:

http://www.automobil-industrie.vogel.de/stuttgart-testet-elektro-lkw-a-529783/

[2.2m]
Liste von Elektro-Nutzfahrzeugen und Elektro-Nutzfahrzeug-Prototypen

https://de.wikipedia.org/wiki/Liste_von_Elektro-Nutzfahrzeugen_und_Elektro-Nutzfahrzeug-Prototypen

[2.2n]
Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: „Im Rahmen des Projektes wurde das Konzept erstmalig auf einer Teststrecke praktisch erprobt und die technische Machbarkeit nachgewiesen: Über längere Strecken ist ein elektri-scher Straßengüterverkehr mit dieselelektrischen Hybridfahrzeugen, die über Stromabnehmer aus einer Fahrleitung elektrische Energie beziehen, technisch möglich sowie ökonomisch und ökologisch sinnvoll.“

http://www.bmub.bund.de/fileadmin/Daten_BMU/Pools/Broschueren/erneuerbar_mobil_2014_broschuere_bf.pdf, Seite 30

ecemento tv das Elektroautoportal: „Siemens testet Oberleitungs-LKW (Video)“, 11.8.2014

http://ecomento.tv/2014/08/11/siemens-testet-oberleitungs-lkw-video/

(Aufruf am 13.3.2016)

[ 2.2o]
Umweltbundesamt: „Treibhausgasneutraler Güterverkehr ist nötig – und möglich“:

https://www.umweltbundesamt.de/presse/presseinformationen/treibhausgasneutraler-gueterverkehr-ist-noetig

[ 2.2p]
BMW: „BMW Wasserstoffmotor erreicht Spitzenwirkungsgrad“, 12.03.2009

http://www.bmwarchiv.de/artikel/2009-03-12-bmw-wasserstoffmotor-erreicht-spitzenwirkungsgrad.html

(Aufruf am 13.3.2016)

[2.2q]
Wikipedia

https://de.wikipedia.org/wiki/Brennstoffzellenfahrzeug

(Aufruf am 13.3.2016)

[2.2r]
Fraunhofer – Forschung kompakt, Juli 2014

http://www.fraunhofer.de/content/dam/zv/de/presse-medien/2014/Juli/fk07_2014_JULI.pdf

(Aufruf am 13.3.2016)

Wikipedia

https://de.wikipedia.org/wiki/Superkondensator

(Aufruf am 13.3.2016)

[2.2s]
Flettner-Rotoren als Schiffsantriebsunterstützung:

https://de.wikipedia.org/wiki/Flettner-Rotor

Enercon: E-Ship 1

http://www.enercon.de/de/aktuelles/e-ship-1-erhaelt-klassenerneuerung/

Forschungsprojekt „MariGreen“

http://www.mariko-leer.de/projekte/marigreen/

[2.2t]
Heise online: „Roboterschiff mit Elektro-Antrieb“

http://www.heise.de/newsticker/meldung/Roboterschiff-mit-Elektro-Antrieb-2411559.html?wt_mc=rss.ho.beitrag.pdf

[2.2v]
Strategieplattform Power to Gas:

http://www.powertogas.info/

Im niedersächsischen Ort Werlte wurde in Kooperation mit der Audi AG eine erste industrielle Versuchsanlage aufgebaut. Technische Daten zum Konzept und zur Anlage finden sich hier:

http://www.etogas.com/

Die Firma „sunfire“ aus Dresden (http://www.sunfire.de/en/) stellt aus Kohlendioxid, Wasserdampf und regenerativer elektrischer Energie flüssige Kraftstoffe her und wurde für ihre Technologie bereits ausgezeichnet: https://www.fona.de/de/20506

[2.2w]
Bundesministerium für Ernährung und Landwirtschaft, Pressemitteilung 16.5.2013:
„Abheben mit Kerosin aus Algen: Bundesministerium fördert Entwicklung von nachhaltigem Biokerosin für Flugzeuge“

http://www.bmel.de/SharedDocs/Pressemitteilungen/2013/145-Projekt-Biokerosin-aus-Algen.html

In Japan fährt ein erster Shuttle-Bus mit Algen-Diesel:
WirtschaftsWoche: Deusel statt Diesel: Bus fährt mit Biosprit aus Euglena-Alge, 8.7.2014
http://green.wiwo.de/deusel-statt-diesel-bus-faehrt-mit-biosprit-aus-euglena-alge/

WirtschaftsWoche: Biotreibstoff: Erster europäischer Algensprit kommt aus Italien, 18.3.2014
http://green.wiwo.de/biotreibstoff-erster-europaeischer-algensprit-kommt-aus-italien/

WirtschaftsWoche: Bakterien-Treibstoff: Start-up plant kommerzielle Anlage in den USA, 26.5.2015
http://green.wiwo.de/bakterien-treibstoff-startup-plant-kommerzielle-anlage-in-den-usa/

WirtschaftsWoche: Mobilität: Algendiesel billiger als Sprit aus Erdöl, 6.6.2013

http://green.wiwo.de/mobilitat-der-erste-bezahlbare-algendiesel-kommt-aus-brasilien/

Ingenieur.de: „Biosprit aus Algen günstiger produzieren“, 21.9.2013

http://www.ingenieur.de/Fachbereiche/Bioenergie/Biosprit-Algen-guenstiger-produzieren

WirtschaftsWoche: „Innovation: Kommt Algensprit bald aus Deutschland?“, 6.6.2013

http://green.wiwo.de/innovation-kommt-algensprit-bald-aus-deutschland/

[2.2x]
Siehe Energiedaten des Bundesministeriums für Wirtschaft und Energie Tab. 6a, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

[2.2y]
„Weltrekord-Elektromotor für Flugzeuge“:
http://www.siemens.com/press/de/feature/2015/corporate/2015-03-electromotor.php?content[]=Corp

04.07.2016

„Erstes Linienflugzeug könnte 2030 teilelektrisch fliegen“:
http://www.golem.de/news/airbus-und-siemens-erstes-linienflugzeug-koennte-2030-teilelektrisch-fliegen-1604-120215.html

weitere Projekte: „Elektromobilität geht auch in der Luft“
http://www.golem.de/news/airbus-e-fan-2-0-elektromobilitaet-geht-auch-in-der-luft-1506-114625.html

[2.2z]
Bundesverband der Deutschen Luftverkehrswirtschaft:
http://www.bdl.aero/de/themen-positionen/umwelt/biokraftstoffe/

„report 2015 Energieeffizienz und Klimaschutz“, Seite 16f

http://www.die-vier-liter-flieger.de/media/filer_public/2015/08/05/energieeffizienz_klimaschutz_2015.pdf

2.3 Behaglich wohnen mit wenig Energie

[2.3a]
Forschungsverbund Erneuerbare Energien, Berlin: Tagungsband zur FVEE-Jahrestagung 2015 „Forschung für die Wärmewende“

http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 55f

[2.3b]
Wikipedia: „Effizienzhaus”

https://de.wikipedia.org/wiki/Effizienzhaus

[2.3c]
Wikipedia: „Photovoltaik”
https://de.wikipedia.org/wiki/Photovoltaik

SolarServer – Das Internetportal zur Solarenergie
http://www.solarserver.de/wissen/basiswissen/photovoltaik.html

Bundesverband Solarwirtschaft

https://www.solarwirtschaft.de/ueber-uns.html

[2.3d]
Wikipedia: „Solarthermie”

https://de.wikipedia.org/wiki/Solarthermie

SolarServer Das Internetportal zur Solarenergie

http://www.solarserver.de/wissen/basiswissen/solarthermie.html

Bundesverband Solarwirtschaft

https://www.solarwirtschaft.de/unsere-themen-solarthermie.html

[2.3e]

Wikipedia: „Oberflächennahe Geothermie“

https://de.wikipedia.org/wiki/Geothermie#Oberfl.C3.A4chennahe_Geothermie

Bundesverband Geothermie:
http://www.geothermie.de/wissenswelt/geothermie/technologien/oberflaechennahe-geothermie.html

[2.3f]
Wikipedia: „Wärmepumpen”

https://de.wikipedia.org/wiki/W%C3%A4rmepumpe

Bundesverband Wärmepumpe e. V.

http://www.waermepumpe.de/

[2.3g]
Wikipedia: „LED-Leuchtmittel”
https://de.wikipedia.org/wiki/LED-Leuchtmittel

[2.3h]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 7a,
Stand 12.1.2016:
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

(Aufruf am 13.3.2016)

[2.3i]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 1, Stand 12.1.2016:

http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html

(Aufruf am 13.3.2016)

[2.3j]
„Auswertung von Verbrauchskennwerten energieeffizient sanierter Wohngebäude“

http://www.zukunft-haus.info/fileadmin/media/05_gesetze_verordnungen_studien/01_fachwissen_kompakt/02_studien/2013_03_Zusammenfassung_dena-Studie_Verbrauchauswertung.pdf

2.4. Auch Wirtschaft und Verwaltung werden sparen

[2.4a]
Energiedaten des Bundesministeriums für Wirtschaft und Energie, Tab. 6a, Stand 12.1.2016:
http://www.bmwi.de/DE/Themen/Energie/Energiedaten-und-analysen/Energiedaten/gesamtausgabe,did=476134.html
(Aufruf am 8.4.2016)

[2.4b]
http://www.verlag.fraunhofer.de/bookshop/buch/Energieverbrauch-und-CO2-Emissionen-industrieller-Prozesstechnologien-Einsparpotenziale-Hemmnisse-und-Instrumente/239044

[2.4c]
https://www.energie.fraunhofer.de/de/presse/pressespiegel/studie-energieverbrauch-und-co2-emissionen-industrieller-prozesstechnologien-einsparpotenziale-hemmnisse-und-instrumente

[2.4d]
Deutsche Energie-Agentur (DENA), Vortrag Stephan Kohler „Energieeffizienz: Einsparpotenziale für die deutsche Wirtschaft“, 6. Juni 2013, Seite 22
http://www.dena.de/fileadmin/user_upload/Veranstaltungen/Vortraege_GF/sk/130606_SK_VEA_Mitgliederversammlung_Berlin_Energieeffizienz_-_Einsparpotenziale_fuer_die_deutsche_Wirtschaft.pdf

[2.4e]
siehe Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: „Energieeffizienz Kurzinfo“ unter dem Absatz „Industrie und Gewerbe“
http://www.bmub.bund.de/themen/klima-energie/energieeffizienz/kurzinfo/

[2.4f]
Umweltbundesamt, Themenbereich „Energiesparen in Industrie und Gewerbe“
http://www.umweltbundesamt.de/themen/klima-energie/energiesparen/energiesparen-in-industrie-gewerbe

Ökodesign-Richtlinie:

http://www.umweltbundesamt.de/themen/wirtschaft-konsum/produkte/oekodesign/oekodesign-richtlinie-einfuehrung

Klimaschutz-Initiative:

https://www.klimaschutz.de/

ERP-Umwelt- und Energieeffizienzprogramm der KfW-Bank:

https://www.kfw.de/inlandsfoerderung/Unternehmen/Energie-Umwelt/Finanzierungsangebote/Energieeffizienzprogramm-%28242-243-244%29/

https://www.kfw.de/Download-Center/F%C3%B6rderprogramme-(Inlandsf%C3%B6rderung)/PDF-Dokumente/6000002221_M_242_243_244.pdf

DIN EN ISO 50001 für Energiemanagementsysteme:

https://de.wikipedia.org/wiki/ISO_50001

https://www.umweltbundesamt.de/themen/wirtschaft-konsum/wirtschaft-umwelt/umwelt-energiemanagement/energiemanagementsystem-gemaess-iso-50001
https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3959.pdf

[2.4g]
Forschungsverbund Erneuerbare Energien, Berlin: Tagungsband zur FVEE-Jahrestagung 2015 „Forschung für die Wärmewende“
http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2015/th2015.pdf, Seite 50:

[2.4h]
siehe zum Beispiel:

Fraunhofer Gesellschaft: „Energieeffizienz in der Produktion“
http://www.fraunhofer.de/content/dam/zv/de/forschungsthemen/energie/Studie_Energieeffizienz-in-der-Produktion.pdf

Hochschule Emden-Leer: „Energieeffizienz in der Produktion“
http://www.hs-emden-leer.de/forschung-transfer/projekte/energieeffizienz-in-der-produktion.html

Optimierung

Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung: „Praxisleitfaden Energieeffizienz in der Produktion“

http://upp-kassel.de/wp-content/uploads/2013/09/Praxisleitfaden-Energieeffizienz-in-der-Produktion.pdf

[2.4i]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 87

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

2.5. Anteil am internationalen See- und Flugverkehr

[2.5a]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 113https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5b]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 114

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5c]
Studie „Treibhausgasneutrales Deutschland im Jahr 2050“ des Umweltbundesamtes (2014), Seite 118
https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/07_2014_climate_change_dt.pdf

[2.5d]
Umweltbundesamt: „Integration von Power to Gas/Power to Liquid in den laufenden Transformationsprozess“ (2016), Seite 14 Abbildung 4

https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/integration_von_power_to_gaspower_to_liquid_in_den_laufenden_transformationsprozess_web_0.pdf

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Peter Terium und Thomas Blechschmidt – ein fiktiver Dialog

Peter Terium (PT) und Thomas Blechschmidt (TB)
– Ein fiktiverDialog –

PT: Wenn wir heute eine für uns unbekannte Gegend bereisen, verlassen wir uns auf ein Navigationssystem. Es führt uns in der Regel sicher ans Ziel, und wenn es zusätzlich mit Daten zur aktuellen Verkehrslage versorgt wird, sogar auf dem schnellsten Weg. Doch Navis haben einen Haken: Sie kennen nur die Gegenwart.

TB: Navigationssystem? In der Regel? Dann haben wir alle einen Haken: Wir leben alle in der Gegenwart. Selbst wenn das den wenigsten bewusst ist, da die Mehrheit überwiegend konservativ ist und den besseren Zustand in der Vergangenheit sieht und sich deshalb gegen jede Veränderung stemmt.

PT: Zukünftige Bauprojekte sind noch nicht berücksichtigt. Und für erst in Kürze auftretende Staus ist das Navi blind. Sobald wir die ausgetretenen, noch nicht kartographierten Wege verlassen, meldet es nur noch „Off Road“. In Konfrontation mit dem Unbekannten bietet das Navi keine Orientierung mehr.

TB: Navis sind praktisch und bequem. Sie irren selten, und wenn, dann ist das meistens lustig. Das war es dann aber auch schon. Gebraucht werden sie nicht. Bis vor kurzem sind wir alle ohne ausgekommen und mir wäre nicht bekannt, dass schon mal jemand beim Autofahren verloren gegangen ist. Abgesehen von Selbstmördern und Unfallopfern. Aber sogar den Unvorsichtigen, der mit seinem VW Käfer in den 50 Jahren im Winter den zugefrorenen Königssee überqueren wollte, hat man 40 Jahre später wieder gefunden.

Ein Navi ist auch nicht zur Orientierung da, sondern zu Entlastung von lästigem Mitdenken. Das Navi ist insoweit eine Art alternatives Glaubenssystem, denn wir wissen nicht, ob die Informationen des Navi stimmen. Es sei denn wir kennen die Strecke aus Erfahrung.
Auch ich nutze ein Navi. Nicht, weil ich es bräuchte. Sondern weil ich ein Elektroauto fahre, ein 100 % BEV. Das Navi sagt mir, wie weit es noch zum Ziel ist und ich weiß dann, ob der „Saft“ reicht und kann mich darauf einstellen. Deshalb ist das Navi für mich nützlich. Das Auto ist inzwischen 6 Jahre alt, hat gut 90.000 Kilometer, und die Navi-Informationen wurden nie aktualisiert. Es ist immer wieder lustig, auf dem Display über Felder zu fahren….

Wer sich wirklich sinnvoll orientieren will nutzt – falls verfügbar – seine Sinne, eventuell vorhandenen Verstand und schaut sich seine Route – soweit es sich überhaupt um eine Fahrt in vollkommen unbekanntes Gebiet handelt – zum Beispiel auf Open Street Maps oder Google Maps an. Oder er verwendet ganz klassisch eine Straßenkarte, die er hoffentlich nicht mit einem Schnittmuster für Faltenröcke verwechselt.

Um sich auf die Zukunft vorzubereiten gibt es eben zwei Wege:

1. Glaubenssysteme und Führungsfiguren, denen man Glauben schenkt. Was einfach, praktisch und logisch erscheint, in der Regel aber in Enttäuschungen endet.

2. Sich grundlegend selbst informieren. Was anstrengend ist, Mühe und Zeit kostet, von niemandem honoriert wird sondern im Gegenteil oft mehr Verdruss und Ärger als Vergnügen bereitet. Vor allem, wenn man sich auskennt, die Dinge versteht und so genannte „Fachleute“, Experten und Politiker damit konfrontiert. Beispiel Bundesnetzagentur: Geht man auf deren Propagandaveranstaltungen zum Thema „Netzausbau“, – womit ausschließlich die Transportnetze und eben nicht die Verteilnetze angesprochen sind – dann darf man staunen, wie eine Reihe von Juristen, die den Begriff ein Kilowatt nicht von einer Kilowattstunde unterscheiden können, dort erklären wollen, wie, warum und wo Stromtrassen und Stromautobahnen notwendig sind. Stromautobahnen deshalb weil Deutsche Autobahnen grundsätzlich lieben.

PT: Für die zukünftige Entwicklung der Energiewelt haben wir kein Navigationssystem, das uns den genauen Weg weisen könnte, denn es gibt schlicht zu viele Unbekannte.

TB: Das ist der Punkt. Wir brauchen dafür kein Navi. Was wir brauchen, um uns sachlich richtig zu informieren ist ein umfassendes und transparentes Informationssystem, wie es eben die Online-Kartensysteme bieten. Dazu gehört an erster Stelle die komplette Erfassung und öffentliche einsehbare Darstellung aller Messdaten an allen existierenden Netzknoten:

– Einspeisepunkte
– Ortsnetztrafos (Ebene 400 V = 0,4 KV zu 10 KV bis 30 KV)
– Umspannstationen (Ebene 10 KV bis 30 KV zu 110 KV)
– Umspannwerke (Ebene 110 KV zu 220 KV – 380 KV)
– Ausspeisepunkte aus Kraftwerken.

Diese Daten, und nur diese, die in Intervallen von 15 Minuten erhoben werden, versetzen uns in die Lage Lasten (Abruf) und Leistungen (Angebot, Lieferung) von Stromabnehmer und -Erzeuger zuverlässig zu erkennen zu analysieren und das Netz als gesamtes effizient und wirtschaftlich zu managen. Und nur diese Daten in dieser Tiefe erlauben eine wirklich angemessene Planung von Stromleitungen.

Beim aktuellen System erfolgt diese „Planung“ nach Geschmack,

Interesse der Investoren (garantierte Rendite = Grundeinkommen und anwachsendes Realvermögen für Kapitalbesitzer) und Ehrgeiz einiger Manager und Politiker. Wer das als linke Propaganda eines Ahnungslosen abtut, soll einfach nur mit nachprüfbaren Fakten erklären, warum zum Beispiel die dringend für die Stromversorgung bayerisch Schwabens benötigte Stromautobahn aus dem Raum Halle / Saale nach Meitingen urplötzlich die Richtung wechselt und im über 200 Kilometer entfernten Landshut endet.
Sind die Stromverbraucher etwa mit umgezogen?

Ich bin nach Besuchen bei der BnetzA und längerer Beobachtung überzeugt, wir werden von Leuten, die an der Spitze großer Organisationen stehen, verarscht. Und zu denen gehören Sie als oberstes Leittier von RWE und innogy nun einmal.

Weshalb sollte irgendjemand, den sie nicht in Lohn und Brot haben, ihnen trauen?

PT: Wollen wir die ambitionierten globalen Klimaschutzziele erreichen, müssen wir uns aber bereits jetzt auf den Weg machen.

TB: Ist es nicht in Wahrheit so, dass wir real „auf den Plätzen“ liegen, eher außerhalb der Wertung, als an der Spitze, wie es die üblichen Verdächtigen aus Politik und Medien uns immer wieder weismachen? Deutschland sei Spitzenreiter, Vorreiter, Musterland, Leitmarkt, etc. für die Energiewende. Alles Geschwätz. Das Gegenteil ist der Fall und oberdrein wird die private Initiative einzelner Menschen mit allen Mitteln behindert. Das zu beweisen ist ein wenig aufwändig, da es nicht mehr genügt, das neueste EEG zu lesen, sondern man es auch ein wenig deutlicher erklären muss, was es bedeutet. Vor allem in der Zusammenschau mit anderen Gesetzen oder Verordnungen zum Thema Energie:

– EEG
– EnWG
– WWg
– EnEV
– KWKG
– eeWWG

PT: Und dafür braucht es eine klare Orientierung, wohin die Reise geht. Eine solche Orientierung kann nur ein Kompass vermitteln.

TB: Das bestreite ich massiv. Ein Kompass sagt, wo Norden ist. Selbst wenn man sich daran orientieren kann und mittels weiterer Werkzeuge feststellen kann, wo man sich befindet, nützt das alles nichts, wenn es kein klares Ziel gibt bzw. das eigentlich klare Ziel beständig und mit allen Mitteln verwässert oder verhindert wird.

PT: Er gibt die Richtung vor, ganz egal wie die einzelnen Wege verlaufen und was auch immer auf der Reise geschieht.

TB: Auch das ist falsch. Die Richtung gibt der Kapitän vor. Und der sollte in einer Demokratie nun einmal der Souverän sein. Verhält es sich nun so, dass der Souverän das nicht kann, oder etwa nicht darf, wie in der BRD oder EU, und die vom Souverän mit der Aufgabe betrauten Vertreter nicht in der Lage, oder auf Deutsch unfähig sind, sich adäquat und in einem logischen und faktisch korrekten Prozess damit auseinander zu setzen, sondern sich statt dessen von den Vertretern der mit der Umsetzung zu beauftragenden Unternehmen leiten lassen, dann ist es kein Wunder, wenn der Fortschritt nicht weiter reicht, als immer weiter hinterher zu hinken.

PT: So behalten wir auch im „Off Road“-Modus unser Reiseziel fest im Blick. Wir haben deshalb bei innogy einen energiepolitischen Kompass entwickelt, den ich vor wenigen Tagen auf der Handelsblatt Jahrestagung Energiewirtschaft in Berlin erstmals der Öffentlichkeit vorgestellt habe.

TB: Das ist es was ich meine. Der Input verbleibt innerhalb einer Filterblase, die weder zuständig ist noch Zuständigkeit haben kann und die noch dazu in dem gefangen steckt, was mittlerweile als confirmation bias beschrieben zu einem massiven Problem der Gesellschaft insgesamt wird.

Energiepolitischer Kompass: Orientierung auf dem Weg in die Energiezukunft

PT: Die Zukunft der Energiewelt wird von drei Megatrends, den sogenannten drei D’s bestimmt: Dekarbonisierung, Dezentralisierung und Digitalisierung. Dabei ist die Dekarbonisierung, die deutliche Reduktion von Treibhausgasen, die übergeordnete Zielsetzung sowohl der deutschen Energiewende als auch internationaler Energiepolitik.

TB: Diese Zielsetzung ist nicht übergeordnet. Zumindest nicht faktisch, sondern maximal verbal. Wir haben seit 2005 eine „Klimakanzlerin“. Und seit 2016 Förderungen, die sogar den Einbau neuer Ölheizungen mit 2.000 Euro belohnen. Von Abgasskandalen und einem im Vergleich zu anderen Ländern nicht stattfindenden Markt für Elektromobilität gar nicht erst zu sprechen. Leitmarkt für Elektromobilität? Der Witz wäre gut, wenn die Realität nicht deutlich zeigen würde, dass die betreffende Industrie das gesamte finanzielle Risiko nicht nur auf die Staatskasse auslagern, sondern sogar noch von der Entwicklung profitieren will. Wer ist der erfolgreichste deutsche Elektroautomobilbauer? Na? Ja, die Deutsche Post AG. Ohne Hilfe der Herren Zetsche, Müller, Stadler, und Co.

PT: Das war auch bei meinem Besuch auf dem diesjährigen Weltwirtschaftsforum in Davos zu spüren, wo mehr Veranstaltungen als je zuvor zu den Themen Klimawandel und saubere Energie stattfanden.

TB: Schön, dass dort solche Veranstaltungen stattfinden. Ist man sich den dort schon einig, wie man das ganze profitbringend einsteuern kann? Ich hätte da ein paar Vorschläge. Ansonsten ist das Event auch nur eine weitere Filter Bubble im confirmation bias einer neuen Aristokratie, eines neuen kapitalgebundenen Feudalismus. Auch Sie müssen sich ja elegentlich als Neo-Liberaler beschimpfen lassen. Die schimpfenden Linken Utopisten haben keine Ahnung und offenkundig auch keinen Verstand. Sie sind auch nur einer, der halt das Glück hatte, innerhalb dieser neuen Aristokratie, der neuen, bestimmenden Schicht marktkonformer Demokratieillusionisten gelandet zu sein.

Ich weiß nicht, in wie weit sie persönlich diesen Zusammenhang verstehen und durchschauen. Sie, Herr Terium, sind nicht schuld. Nur ein wenig mehr mitverantwortlich als die Mehrheit.

Aber ich weiß und könnte es beweisen, dass die in Ihrem soziokulturellen Umfeld geheiligte betriebswirtschaftliche Maxime „niedrigster Preis“ = „maximale Rendite“ deutlich mehr Schwierigkeiten und Probleme verursacht, als sie volkswirtschaftlichen und individuellen Nutzen für Jeden bringt.

Falls Sie Zeit aufwenden wollen, lesen Sie, was gute Leute außerhalb ihres filter bubble confirmation bias erarbeitet haben.

Orangebuch Energiepolitik

PT: Der energiepolitische Kompass ist für uns bei innogy richtungsweisend. Denn er reflektiert unser Geschäftsmodell mit dem bewussten Fokus auf Erneuerbaren Energien, Verteilnetzen und Vertrieb. Und er prägt unsere strategische Agenda für die Zukunft.

TB: Daraus lese ich jetzt, dass Sie den gerade beschriebenen Zusammenhang nicht durchschauen. Ich behaupte: Netzbetrieb – egal welches Netz (Strom, Gas, Wasser, Straße, Schiene) und welche Ebene – ist wirtschaftlich kein für den Wettbewerb geeigneter Teilsektor. Das Gleiche gilt für Meßdienstleistungen.

Klar. Sie sprechen für ein Unternehmen und sind deshalb an Geschäftsmodellen interessiert. Diese Art Interesse darf aber nicht länger die faktischen Bedürfnisse der Bevölkerung vereinnahmen. Von den emotionalen gar nicht zu reden.


Der Kompass zeigt in Richtung Sektorkopplung.

PT: Die Energiewende ist derzeit noch eine reine Stromwende.

TB: Das trifft zwar zu, doch nur insoweit, als sich auch beim Strom zu wenig wendet, im Gegenteil mehr und mehr Hindernisse aufgebaut werden. Bzw. bereits jetzt die Weichen gestellt werden, die privaten Investoren und die Endverbraucher von Strom später zum Erhalt der Großstrukturen – und damit zum Begleichen der Verluste und Schulden von RWE, EON, ENBW, Vattenfall und Co. in die Verantwortung zu nehmen.

PT: Doch auf die Energiewirtschaft entfällt weniger als die Hälfte aller CO2-Emissionen.

TB: Sorry, aber nicht nur die Stromwirtschaft ist eine Bewirtschaftungsform für Energie. Dazu gehören auch die Ölindustrie, die Gas-„Industrie“, Kohle, Holzkohle, Brennholz und ein paar weitere kleinere Bereiche.

PT: Eine Dekarbonisierung gelingt deshalb nur, wenn alle Sektoren mitziehen. Konkret kann das bedeuten, dass die mit dem Ausbau der Erneuerbaren Energien verbundenen höheren Strommengen auch in den Sektoren Wärme und Verkehr genutzt werden.

TB: Diesen Teil der Predigt hören aufmerksame Menschen seit 15 Jahren. Nichts grundlegend Neues. Tatsache ist jedoch, dass in Europa, nicht nur in der BRD, nur noch vorankommt, was 100% gesicherte Rendite und Risiko gegen Null einbringt. Wir, genauer gesagt eine große, aber politisch bestimmende Minderheit der Bevölkerung, sind dabei das virtuelle Vermögen der Zukunft zu verspeisen. Mit dem System der Emissionszertifikate haben wir seit langem ein von den „maßgeblichen“ Eliten sanktioniertes, gewolltes, „marktwirtschaftliches“ und vielgepriesenes System, das bekanntermaßen keinerlei Wirkung hat. Weshalb also sollte irgendjemand einem exponierten Vertreter der Wirtschaftselite in irgendeiner Weise trauen?

PT: Dafür müsste jedoch die Wettbewerbsfähigkeit des Stroms verbessert werden, die heute aufgrund von staatlichen Abgaben und Steuern gegenüber anderen Energieträgern zurücksteht.

TB: Moment Mal. Es war Ihre Zunft, der Stall, in dem Sie an die Spitze gekommen sind, der genau dieses System genau so wollte. Selbst wenn ich Ihnen in dieser Hinsicht, die ich seit sechs Jahren vertrete, Recht gebe, fehlt mir an der Stelle jetzt aber eine klare Aussage, wie Sie sich diese Stärkung der Wettbewerbsfähigkeit vorstellen.
Die bayerischen IHK haben dazu ein Positionspapier verfasst, das zwar wie sie das Problem erstmals korrekt erkennt, aber leider wie üblich keinen in irgendeinem erträglichen Sinn vernünftigen Lösungsansatz bietet. Sie legen hier einen Köder aus. Was aber steckt dahinter?
Ich habe ein klares Konzept dafür, dass ich hier aber nicht ausbreite.


Der Kompass zeigt in Richtung starke Verteilnetze.

PT: Die Energiewende bringt eine zunehmend dezentrale Stromerzeugung mit sich. Schon heute werden die Erneuerbaren Energien fast ausschließlich in die Verteilnetze eingespeist. Die Energiewende braucht leistungsfähige Verteilnetze, die diesen neuen Rahmenbedingungen Rechnung tragen. Deshalb muss in den nächsten Jahren erheblich in den Netzausbau investiert werden, wozu die Verteilnetzbetreiber jedoch wirtschaftlich nur in der Lage sind, wenn die Regulierung es zulässt.

TB: An der Stelle bin ich mit Ihnen vollkommen einig. Nur fürchte ich, werden sich unsere Vorstellung was, wie und wer ein wenig, aber bedeutend, unterscheiden.

Der Kompass zeigt in Richtung digitale Innovationen.

PT: Digitalisierung ist derzeit vor allem mit einer großen Automatisierungswelle gleichzusetzen. Doch die digitale Transformation ist weitaus mehr als die bloße Digitalisierung ehemals analoger Prozesse. Sie betrifft das ganze Unternehmen und verändert fundamental ihr Geschäftsmodell, ihre Kultur, ihre Produkte und die Interaktion mit den Kunden.

TB: Richtig. Und da diese Digitalisierung neben der Auflösung bisheriger Arbeitsplätze auch die Möglichkeit zu massiver Überwachung, Kontrolle und Manipulation bietet, ist größte Vorsicht geboten. Aus Sicht der privaten Endverbraucher. Aus diesem Grund gibt es in meinen Augen zwingende Konsequenzen. Ein davon ist, dass sämtliche Großkonzerne ebenso wie vertikal entlang möglichst geschlossener Wertschöpfungsketten ausgerichtete Wirtschaftsunternehmen aufgelöst und abgewickelt werden. Zudem müssen alle Teilbereiche, die sich keinem qualitativen Wettbewerb stellen können, sondern nur über Preis und politische Subventionen in Wettbewerb treten können, vergemeinschaftet bzw. „verstaatlicht“ werden. Die Form der Wahl sind dabei möglichst kleine Genossenschaften, Gemeindeswerke oder Stadtteilwerke. Vor allem darf bezüglich Abgaben und Begrenzungen kein Unterschied zwischen privaten und gewerblichen Erzeugern fortbestehen. Das aktuelle EEG weist diesbezüglich in die komplett falsche Richtung.

PT: innogy ist mit innovativen Produkten und Dienstleistungen bereits in Vorleistung gegangen. Doch um das Potenzial der Digitalisierung vollständig ausschöpfen zu können, benötigen wir auch förderliche gesetzliche Rahmenbedingungen, beispielsweise im Bereich des Datenschutzes.

Der Kompass zeigt in Richtung Europa.

PT: Nationale Regierungen und Parlamente sind hoffnungslos überfordert, wenn sie sich um globale Emissionsziele kümmern sollen. Doch die Europäische Union befindet sich aktuell in der Krise; sie verliert mehr und mehr die Fähigkeit, gemeinsame Regeln zu beschließen und umzusetzen. Wir brauchen aber europäische Initiativen zur Marktintegration, zum Ausbau der Erneuerbaren Energien, zur Stärkung der Verteilnetzbetreiber oder für einen Digitalen Gemeinsamen Markt. Deshalb wird sich innogy auch weiterhin für ein starkes Europa im Allgemeinen und für eine ambitionierte europäische Energiepolitik im Besonderen einsetzen.

TB: Da stimme ich zu.

Die Energiewende lässt sich nur gemeinsam zum Erfolg führen

PT: innogy ist ein Unternehmen, das die Energiewende vorantreiben kann. Wir denken weiter als nur bis zur Errichtung von Windparks und dem Aufstellen von Solarpaneelen. Vielmehr beschäftigen wir uns mit der Frage, wie das Gesamtsystem in der Zukunft funktionieren kann. Doch ein einzelnes Wirtschaftsunternehmen kann die neue Energiewelt nicht entstehen lassen.

TB: Das hört sich zwar honorig an, ist aber der falsche Weg. Bieten sie mit innogy entweder technische Lösungen oder Installation oder Energiebereitstellung Handel oder Consulting und Management. Aber verabschieden Sie sich bitte von der Vorstellung irgendwer bräuchte weiterhin große oder tief integrierte Konzerne. Es mag viele geben, die an diesen Strukturen hängen, schlicht weil man hohe, wichtig anmutende, höchst bezahlte – Ja, auch Sie bekommen viel zu viel Gehalt, Herr Terium – Posten und vermeintliches Ansehen haben kann.

PT: Dazu braucht es eine gemeinsame Anstrengung von Politik und Wirtschaft, Wissenschaftlern und Verbrauchern. Voraussetzung dafür ist eine Verständigung über die Richtung, die wir einschlagen, und die Wege, die wir gehen wollen. Dies kann nur über eine breit angelegte, vorbehaltlose und interdisziplinär geführte Debatte geschehen. Und genau dazu möchte ich hier auf LinkedIn einen Beitrag leisten, indem ich meine Vorstellungen von der Energiezukunft regelmäßig mit Ihnen teile und zur Diskussion stelle. Das Ziel der Energiewende steht fest. Jetzt müssen wir die Richtung einschlagen und die vielversprechendsten Wege gehen. Je mehr sich daran beteiligen, desto schneller und besser kommen wir voran. Denn die Energiewende lässt sich nur gemeinsam zum Erfolg führen.

TB: Ich bin im Prinzip gern dabei. Habe aber nach Jahren dummer Sprüche, Herablassung, Verächtlichmachung durch Politiker, „Experten“, Manager, „Fachleute“, Verbandswichte und Schwätzer die Nase ziemlich gestrichen voll. Vor allem sind sogar Blumentöpfe nur innerhalb der geschlossenen Strukturen der Energiewirtschaft zu gewinnen.

LinkedIn bietet an, mich zum Follower Ihrer Beiträge zu machen. Das ist wie bei Twitter: Leader und Follower. Oder Führer und Volk. Vernetzen ist OK, aber dieses Prinzip scheint mir ein Irrweg. Wie Twitter, Snapchat, Whatsapp, usw.

Fragen und Austausch per Email gern.

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Thomas Blechschmidt
EUREM (Europäischer Energiemanager)
Unabhängige und freie Beratung für
Energieeffizienz
Eis-Energiespeicher Systeme
Wärme – Kälte – Strom

 

 

Zu Besuch: Die Bundesnetzagentur in München

Teilnahmebericht und Kommentar zur

Veranstaltung der Bundesnetzagentur zum Netzausbaubedarf am 21.04.2015 in München, Lehel-Carrée, Gewürzmühlstrasse 11

Mal vorneweg: Wir reden hier über geschätzte 10 Mrd. Euro Investitionen im Segment „Energie“, welches ein jährliches Umsatzvolumen von 570 Mrd. Euro hat. Zum Vergleich: Die deutsche Automobilindustrie setzt 360 Mrd. Euro im Jahr um. Diese 10 Mrd. werden uns als kleine, private Endverbraucher ca. 2 Cent mehr pro kWh auf dem Strompreis kosten. Wir sollten beim Thema Energie aber immer an eines Denken: Die Kosten für den Import von Energieträgern lagen bei ca. 100 Mrd. Euro im Jahr.

Aktuell ist es etwas weniger, da der Ölpreis gefallen ist. In Zukunft werden es aber mit Sichehreit wieder mehr sein. Und je knapper, desto teurer. Nicht zu vergessen: der politische Aspekt. Wer hat Lust, mit seiner Gasrechnung – und auch der Rechnung für Steinkohlestrom – Wladimir Putin seine 40 neuen Atomraketen zu finanzieren?

Am 21.04.2015 war es soweit. Die Bundesnetzagentur hat Bürger und Interessierte eingeladen, mit ihr über den Netzausbaubedarf, den Szenariorahmen 2024 für die Stromversorgung Deutschlands und einige weitere Aspekte zu sprechen. Am 21.04.2015 habe ich mich deshalb überpünktlich an den Ort der Veranstaltung begeben.

Vom Grundgedanken her, die Bürger über solche Veranstaltungen an dem Geschehen teilhaben zu lassen, sind solche Events sehr zu begrüßen. Was mich als im Allgäu Lebenden auch besonders gefreut hat:

Der Veranstaltungsort war München und somit auch für einen nicht vom Stromtrassenbau durch Eingriffe vor Ort Betroffenen ohne größeren Aufwand in akzeptabler Zeit erreichbar. Betroffen bin ich dennoch, denn auch ich darf die Verspinnwebung unseres Landes mit noch mehr Stromleitungen über Netzentgelte mit bezahlen.

Um 14:00 Uhr ging es los. Die erste große Überraschung war, dass die Tagesordnung durch weitere Vorträge ergänzt wurde. Statt drei gab es fünf Vorträge. Dies, und der Bedarf an Auseinandersetzung durch heftige Einwände, Statements und Diskussionen haben am Ende zu weniger Diskussions- und Gesprächsmöglichkeiten geführt, als für den Themenkreis eigentlich erforderlich wäre.

Die Aufsplitterung in drei parallele Workshops (Bedarfsrechnung, Umweltauswirkungen und Technik) im zweiten Teil mit gemeinsamer Abschlussrunde mag zwar organisatorisch besser auf die Mittel der BnetzA zugeschnitten sein, führt jedoch dazu, dass sich die wenigsten wirklich ausführlich mit den Themen befassen können. Deshalb soviel als Ergebnis vorweg: Wir hätten locker bis Mitternacht weitermachen können.

Das Schlimmste an der Veranstaltung war das Desinteresse der Landespolitik. Auch wenn der ein oder andere Vertreter aus Landtag und Staatsregierung anwesend war: Gesagt hat keiner was, und auf die Idee, seine Bürger = Gäste mit ein wenig mehr als nur Kaffee und Wasser zu versorgen ist auch keiner aus der Politik gekommen. Immerhin dauerte das Event insgesamt nahezu sechs Stunden.

Es wäre auch besser gewesen, früher anzufangen, tatsächliche Pausen zu machen und die Fülle der Vorträge und Diskussionen auf einen ganzen Tag zu verteilen. Die Staatsregierung sollte sich bei solchen Events als Ausrichter und mit einem vernünftigen, energiereichen Catering beteiligen.

Doch nun zum Inhalt. Begonnen hat der Präsident der Bundesnetzagentur, Jochen Homann. Was mir als Bayern sofort aufgefallen ist: Er hat eine sehr ähnliche Intonation und einen ähnlichen Redestil wie Sigmar Gabriel. Zumindest ich musste sofort an den aktuellen Bundeswirtschaftsministerversuch der SPD denken. Herr Homann begann entsprechend auch sofort mit einem Glaubensbekenntnis: „Die Entscheidung für die Energiewende ist eine Entscheidung für den Netzausbau!“ Und wie man seinen folgenden Ausführungen entnehmen konnte, ist dieser Satz nicht nur Schlussfolgerung als vermeintlich gesichert erkannter Notwendigkeiten, sondern zugleich auch Prämisse für die deshalb notwendigen Maßnahmen. Frei nach dem Prinzip: Ich beweise, was ich als Ziel anstrebe, indem ich es voraussetze, was ich als Ziel anstrebe. Der logische Zirkelsschluss als Argumentationsprinzip.

Mein Eindruck hat sich verstärkt: Wir haben es mit einer hermetisch geschlossenen Sicht- und Denkweise zu tun. Einem circulus vitiosus, dessen tragende Elemente nicht in Frage stehen dürfen.

Auch wenn Herr Homann mit seiner Mitteilung „Die BnetzA strebt nicht nach einem optimalen Netzausbau!“ diese These zu relativieren scheint, so erlebt der Zuhörer nach spätestens 20 Minuten die Heiligsprechung aller verkündeten, seligmachenden Maßnahmen durch einen Satz, der schon keine These mehr ist, sondern mehr eine Gesetzesverkündung: „Das Thema, bzw. die Forderung, der Bedarf müsse nachgewiesen werden, ist abwegig.“

Wortwörtlich zitiert aus dem Mund des Präsidenten der BNetzA.

Was soll ich als Bürger nun damit anfangen? Wie sich in der späteren Diskussion, in der es auch echte Anfeindungen seitens einiger teilnehmender BIs gab, herausstellte, versteht man bei der Bundesnetzagentur ein Grundproblem nicht, auch wenn zumindest der Moderator der Veranstaltung es benennen konnte:

Ein großer Teil der Bürger ist nicht mehr bereit, den Bekräftigungen und Aussagen von so genannten „Experten“ Glauben zu schenken, wenn diese den grundsätzlich gleichgerichteten Aussagen von Interessenvertretern – hier die Netzbetreiber – und einer Bundesbehörde – hier die BnetzA – zustimmen und diese Experten zwar als unabhängig bezeichnet werden, aber in keinem transparenten Verfahren ausgewählt wurden. Der Bürger denkt, die Expertise sei bestellt und gekauft im Sinne der Netzbetreiber und die BNetzA sei Erfüllungsgehilfe.

Was natürlich dadurch verstärkt – ja geradezu bewiesen wird – dass die Berechnungsmethoden und die den Berechnungen zu Grunde liegenden Rohdaten schlicht vertraulich sind. Diese Daten erhält nach §12 f EnWG nur ein handverlesener Personenkreis, der „ausreichende Fachkenntnis“ und „berechtigtes Interesse“ nachweisen kann.

Zudem wird darauf verwiesen, dass mit diesen Daten nur umgehen kann, wer die passende Software hat. Da es nun ca. 40 Personen bzw. fachkundige Gutachter und Ingenieurbüros gibt, die diese Daten bisher erhalten haben, könne man sich auch an diese wenden. Was nur keider keinen Fortschritt bringt, weil „diese“ einerseits Vertraulichkeitsvereinbarungenunterschrieben haben – also auch keine Daten herausgeben dürfen – und man für die statt dessen dort beauftragbaren Thesen ordentlich Geld auf den Tisch legen darf. Womit man wiederum irgendwem vertrauen muss,alsowieder nichts nachprüfen und verifizieren kann, und / oder gleichzeitig jedes Minimumn transparenter Information für den Normalbürger unerreichbar ist.

Mein Einwand war entsprechend sofort, es sei nicht akzeptabel, dass Bürger auch noch Geld dafür bezahlen und die fürstlichen Honorare einer kleinen Gruppe von Auserwählten bestreiten, um den Nachweis für die Notwendigkeit eines Netzausbaus, den sie mit ihren Netzentgelten sowieso bezahlen dürfen, lediglich wieder nur von Dritten bestätigt zu bekommen.

An der Stelle vorgezogen ein Einschub, der meine persönliche Diskussion mit Dr. Jochen Patt wiedergibt.

Mit ihm habe ich anschließend an die Veranstaltung gesprochen. Im Vortrag wurde erklärt, dass die Daten sowieso schon allein deshalb nicht herausgegeben werden können, weil es sich um Stundenwerte von 8.760 Stunden im Jahr an den vielen Messpunkten im deutschen Netz handelt.

Meine erste Nachfrage hat ergeben: Es sind ca. 500 Messpunkte, die die Einspeisung der Kraftwerke ausschließlich an den Knoten des Höchstspannungsnetzes (HÖS) erfassen, sowie weitere ca. 50 Messpunkte an den Grenzkuppelstellen.

Mein Vorschlag war, das jeweilige Leistungsdiagramm eines Messpunktes für jede Stunde als pdf in ein online-Archiv zu stellen. Knapp 5 Millionen pdf-files pro Jahr, vernünftig geordnet, wären kein Problem. Und jeder kann sich in seinem Netzbereich heraussuchen, was ihn interessiert.

Alternativ sollte es kein Problem sein, die Leistungsdaten von 550 Messpunkten in Echtzeit verfügbar zu machen. 550 Fensterchen mit Diagramm auf einer Onlinekarte der BRD sind zwar ein ordentlicher Programmier- und Datenpflegeaufwand, aber kein Hexenwerk. Allein das privat organisierte Onlineportal Lemnet.org zeigt z. B. mehrere tausend Elektroautoladesäulen an und übermittelt deren aktuellen Betriebszustand online.

Das Gegenargument: Dann könnte ein Wettbewerber sich die Daten eines Messpunktes holen und auf die Effizienz und die betriebswirtschaftliche Situation des am Messpunkt hängenden Kraftwerks zurückzuschließen, denn ein Kraftwerk pro Messpunkt sei die Regel.

Schön und gut, dann wäre es sinnvoller, auf der anderen Seite des Netzknotens den Lastabruf zu messen. Die Querverschiebung von Strom innerhalb des HÖS wäre dann zwar öffentlich nicht mehr direkt sichtbar, aber der Bedarf pro Netzknoten schon. Man kann immer noch erkennen, wie hoch der Transportbedarf wirklich ist, nur die Quelle bliebe anonym.

Herr Dr. Patt erläuterte mir, dass man bei der BnetzA intensiv darüber nachdenke, wie man die Grundlagen der Bedarfsberechnung besser öffentlich erkennbar machen könne und wolle auch in Zukunft weniger restriktiv mit den Daten umgehen. Allerdings sei man selbst derzeit mit der eigenen Rechnerkapazität am Ende. Die eigene IT der BnetzA ist ausgereizt.

Im weiteren Gespräch habe ich die interessanteren Informationen bekommen: Die Messpunkte auf den Netzebene HS, MS und NS werden gar nicht erfasst. Dort wird zwar aktuell zu Überwachungszwecken gemessen und regelnd in das Netz eingegriffen, aber es erfolgt keine Auswertung der Daten in Bezug auf das Auftreten von Last- und Leistungsspitzen, temporäre Zuordnung, Querverschiebungen etc.

Mit anderen Worten: Wir wissen gar nichts. Weder die BnetzA noch die Bürger.

Die einzige Konsequenz vor jeder weiteren Stromtrassenplanung kann daher eigentlich nur eine DENA-Netzstudie III sein, die einen vollkommen neuen Ansatz erfährt:

– Bottom – up Aufbau von der Verbraucherseite her
– Lastgangsmessung an der Lastseite aller Netzknoten: NS, MS, HS, HÖS
– transparent veröffentliche und online einsehbare Lastdiagramme
– Bestimmung aller kritischen Lastspitzen
– Simulation der Ergebnisse bei Einsatz von passend ausgelegten Speichern zur Aufnahme von Erzeugungsspitzen und Kappung von Lastspitzen an den verschiedenen Netzknoten

Jede Zukunftsplanung muss zusätzlich das noch immer nicht genutzte Potential der rein generativen Stromerzeugung beinhalten.

Wie die BnetzA selbst zugibt – und damit meiner Beschreibung zustimmt – dass das bundesdeutsche Stromnetz mit Österreich ein organisch gewachsenes Gebilde ohne zu Grunde liegende konkrete Planung ist, weist dies darauf hin, dass die Pläne und Bemühungen der Netzbetreiber, der Behörde und der Bundesregierung darauf hinauslaufen, den Ansatz einer zentralisierten bzw. zentral gelenkten Stromversorgung noch weiter zu verstärken. Der § 15 NaBeG stellt dazu eigens den Vorrang der Bundesplanungen vor den Ländern sicher. Damit wurde der Umsetzung einer dezentralen Stromversorgung ein weiteres Hindernis entgegengestellt. Diese dezentrale Stromversorgung ist jedoch unausweichliche Konsequenz, wenn tatsächlich jemals eine Vollversorgung aus „Erneuerbaren“ erfolgen soll.

Zu guter Letzt habe ich Herrn Patt verdeutlicht, dass die Nichtberücksichtigung der Stromflüsse, Lastspitzen und Leistungsspitzen auf den „unteren“ Netzen in Tateinheit mit dem völligen Ignorieren der technischen Möglichkeiten von Speichern aus meiner Sicht ein schwerwiegender systematischer Fehler ist.

Das Äquivalent in der Finanzpolitik dazu wäre, die Deckung des Staatshaushalts in Zukunft nur noch auf Steuern auf Erträge (nicht zu verwechseln mit Überschüssen oder Gewinnen) abzustellen, die von den Firmen erwirtschaftet werden, die 70 % des Bruttosozialprodukts erzeugen.

Erstens benötigt die Stromversorgung auf Grund der Fähigkeiten und Möglichkeiten der Elektrotechnik in Verbindung mit Speichern keinerlei manuelle Kontrolle und kein menschliches Eingreifen mehr. Gerade in Verbindung mit ausreichend großen und leistungsfähigen Batteriespeichern an Netzknoten auf allen Ebenen überwacht die Elektronik Frequenz, Spannung und Stromstärke vollautomatisch, balanciert die Schwankungen vollautomatisch aus, leitet Überschüsse in die Speicher ab oder gleicht Defizite aus diesen aus.

Zweitens entstehen und vergehen auf den Ebenen NS und MS genau die Bedingungen, auf denen die Szenarien für die Verschiebung von Energie und Leistung aufbauen.

Drittens haben Verbraucher mittels Speichern die Möglichkeit, ihren Verbrauch zu glätten und sich so vor unerwünschten Rückschlüssen auf ihr persönliches Verbrauchsverhalten ebenso wie vor Preisschwankungen durch unregelmäßige Last zu schützen. Smart Meter als Wunschtechnologie bewirken genau das Gegenteil und werfen intensive Fragen nach Datenschutz auf. Auch Unternehmen sind Verbraucher und haben ein legitimes Interesse, dass ihr interner Verbrauch nicht öffentlich eingesehen werden kann.

Viertens ermöglichen Speicher das Auffangen volatil und rein generativ erzeugten Stroms. Sie nehmen Leistungsspitzen von PV-Anlagen und Windrädern auf und geben den Strom konstant über längere Zeiträume, sogar genau zum passenden Zeitpunkt ab.

Fünftens ermöglichen Speicher die problemlose Implementierung weiterer Kapazitäten an generativer Stromerzeugung. Eine Studie des Fraunhofer ISE hat 2013 aufgezeigt, dass in einem beliebigen Verteilnetz eine Abdeckung von 40 % der installierten Kapazität an generativer Stromerzeugung mit Batteriespeichern die Aufnahmefähigkeit des Netzes für weitere generative Anlagen um 60 % erhöht.

Die Folgen eines Zubaus von Batteriespeichern hätten für die aktuelle Bedarfsplanung der BnetzA die Konsequenz, dass ihr eben diese Planung um die Ohren fliegt.

Dann hätten wir halbfertig gebaute Trassen, Millionen Planungskosten in den Sand gesetzt und brauchen sie gar nicht.

So viel zum sehr angenehmen Gespräch mit Dr. Patt. Er hat leider die Meinung, dass keine Speichertechnologie in großen Rahmen verfügbar sei. Die bereits in Betrieb befindlichen Großanlagen in Kalifornien, Japan, Texas, China und auch in Deutschland sind ihm entweder nicht bekannt, oder werden nach wie vor als Testanlagen bewertet.

Tatsächlich jedoch ist Speichertechnik bereits jetzt für jedermann ganz regulär käuflich erwerbbar und als Serienprodukt verfügbar. Im Gegensatz zu Power-to-Gas-Anlagen, die nach wie vor als Projekt aus mehr oder weniger verfügbaren Einzelkomponenten individuell zusammengestellt werden müssen, kann man ohne weiteres auch 5 MW oder 10 MW Batteriespeicher bei der Industrie ordern. Höhere Leistungen werden in der Realität eher selten benötigt.

Doch zurück zum Vortrag von Herrn Homann.

Seine erste Beschwichtigung war, dass die BnetzA nicht nach dem optimalen Netzausbau strebe. Das hat mich zunächst schockiert, doch ich gehe mal zu seinen Gunsten davon aus, dass er „nicht maximal“ sagen wollte. Denn eines dürfte gerade in Bayern unstrittig sein: Wenn wir etwas machen, dann immer optimal, also so gut wie möglich.

Dennoch muss man das angesichts des aktuellen Stands der Batteriespeichertechnik und der prognostizierten Zeit bis zur Umsetzung des Ausbaus in Frage stellen. Wer sich über den Stand der Batterietechnik informieren will, der möge die EES besuchen, die parallel zur INTERSOLAR vom 10.-12. Juni in München stattfinden wird.

Herr Homann teilte weiter mit, dass Bayern gefordert habe, dass die BnetzA zukünftig die Ausbauszenarien alleine erstellt. Nun, auch wenn das eine durchsichtige Forderung der CSU = Staatsregierung ist, ist der Vorschlag als dezente Kritik an der Dominanz der Übertragungsnetzbetreiber prinzipiell zu begrüßen. Allerdings bräuchten wir dafür eine personell vollständig neu aufgestellte BNetzA.

Bei der Gelegenheit wäre die Bedarfsberechnung bottom-up vom Kopf auf die Füße zu stellen: Installation dynamischer Messtechnik an allen Netzknoten von NS über MS und HS bis HÖS, Ermittlung der Last- und Leistungsspitzen, Modellierung einer vernünftigen Spitzenkappung über Speicher, Hochskalierung auf die nächste Ebene, erneute Modellierung der Spitzenkappung und so fort bis die real benötigten Lastverschiebungen dadurch klar und deutlich nachvollziehbar sind. Auf diesem Weg ohne irgendwelche sensiblen Daten von Unternehmen und Bürgern zu veröffentlichen.

Es lohnt sich ohne weiteres, für so ein ambitioniertes Projekt noch einmal zwei Jahre in die Hand zu nehmen, denn auch der Stromtrassenbau wird locker 15 Jahre dauern. Sofern ihn die Bürger zulassen.

Jochen Homann ging auch kurz auf die laufenden bayerischen Landesentwicklungspläne ein, die von den Medien als angebliche „Trassenverhinderungspläne“ kommuniziert werden. Sein kurzer Kommentar dazu: Der §15 NABeG stellt klar, dass unsere Planungen vorgehen. Da haben die LEP keine Chance, aber wir wollen keinen Streit, sondern einvernehmliche Lösungen mit den Landesbehörden.

Ja, mit den Behörden! Aber was ist mit den Bürgern? Allein diese Entwicklung einer weiteren Verschiebung von Gestaltungsmacht aus dem Land nach Berlin ist für mich ein ausreichendes Argument für die Wiedererlangung der vollen staatlichen Souveränität Bayerns. Ohne CSU. Die kann Deutschland dann gern vollumfänglich übernehmen und integrieren.

Homann argumentierte weiter mit den Folgen von Netzengpässen, die pro Jahr einen dreistelligen Millionenbetrag kosten: (115 Mio. in 2014). Die gelte es zu vermeiden. 10 Mrd. € Netzausbau um 115 Mio. € pro Jahr einzusparen. Mal sehen ob mir meine Bank auf der Grundlage ein Darlehen gewährt.

Jetzt wäre es schön gewesen zu erfahren, an welcher Stelle und zu welchen Zeitpunkten diese Engpässe aufgetreten sind. Und gegenüber zu stellen, wie viel Speicherkapazität und Leistung damit pro Jahr aufgebaut werden kann. Denn Speicher bieten schlicht mehr Möglichkeiten als Leitungen.

Ich schiebe es mal ein: Nach aktuellem Stand kann man damit 480 MWh Kapazität bei 160 MW Leistung aufbauen. Pro Jahr. Das wäre z. B. ein Speicher, der den stark schwankenden Bezug der Lechstahlwerke Meitingen punktgenau ausregulierenkann und damit gleichzeitig 750 MW Ausbaubedarf wegnimmt. Die deutlich größere Bedarfseinsparung ergibt sich aus den entfallenden Sicherheitszuschlägen beim Leitungsbau, da maximal Kapazitäten nicht einfach additiv aufsummiert werden dürfen. Das bedeutet: Will man den Strombezug für die LSW Meitingen bei 150 MW benötigter Leistung nach Abschalten des AKW Gundremmingen über eine Fernleitung aus dem Brandenburger Braunkohlerevier sicherstellen (ca. 600 statt 40 Kilometer), dann müssen diese 150 MW vom ersten bis zum letzten Meter gesichert durchgehen, Bei einer kalkulatorischen Auslastung einer Fernleitung mit 20 % bedeutet das: 5 Mal mehr Leistung vorsehen.

Wie der Präsident der BnetzA weiter erklärte, habe seine Behörde ca. 1/3 der beantragten Ausbaumaßnahmen der Netzbetreiber gestrichen. Dieses Argument soll die Unabhängigkeit und Kritikfähigkeit seiner Behörde beweisen oder zumindest unterstreichen.

Woher aber soll ein Bürger wissen, ob die Netzbetreiber – es sind ja nur die vier auf der HÖS-Ebene tätigen – nicht ganz bewusst ein möglichst aufgeblasenes Szenario vorgelegt haben, um am Ende das eigentliche vorläufige Ziel zu erreichen? Immerhin – wie am Gespräch mit Dr. Patt aufgezeigt – können wir die Berechnungsgrundlagen, sprich Daten, der Bedarfsszenarien nicht transparent nachvollziehen. Bei bevorstehenden Verhandlungsszenarien ist es nicht unüblich, auf das Ziel eine ordentliche Verhandlungsmasse oben drauf zu packen.

Denn eines darf nicht vergessen werden: Die Netzbetreiber erhalten eine garantierte Rendite von 9,05 % auf ihr investiertes Eigenkapital. Begrenzt ist dabei lediglich die Höhe des Eigenkapitals pro Vorhaben auf 40 % und es gibt eine modellierte betriebswirtschaftliche Bewertungsgrundlage für Netzbetriebe, auf der die Garantie beruht. Diese begrenzt die Auszahlung der Renditegarantie in effektivem Geld auf einen Wert, der 9,05 % entspricht. Betriebswirtschaftliche Fehler des Netzbetreibers führen somit zum Absinken der Rendite. Das ist vergleichbar mit einem Hartz-IV-Empfänger, dem nicht mehr als das festgelegte Maximum für die Wohnung plus Nebenkosten gezahlt wird, der aber dennoch real mehr Miete und höhere Energiekosten zahlen muss. Der Unterschied besteht allerdings in der monatlich zugestandenen Vergütung für einen beliebigen Mitarbeiter eines Netzbetreibers und dem Lebenskostenhaltungssatz, der einem Hartz-IV-ler zugestanden wird. Kommt der Hartz-IV-Empfänger nicht mit seinem Geld aus, muss er halt eine billigere und kleinere Wohnung suchen.

Laut Homann sind weiterhin, auch nach Streichung eines Drittels des Bedarfs, alle geplanten HGÜ notwendig, da „Wind dimensionierend“ sei und deshalb große Leitungskapazitäten erforderlich mache.

Windstrom, der in Speichern gelagert wird und damit Braunkohlekapazitäten überflüssig macht, wurde nicht thematisiert. Ebenso wenig die Herstellung von synthetischem Methan oder einfach nur Wasserstoffgas aus überschüssigem Windstrom.

Der Bezug nach Bayern durfte natürlich nicht fehlen. Deshalb erläuterte Hohmann, das „zentrale Ergebnis des bayerischen Energiedialogs, sei, dass ab 2022 in Bayern eine Stromlücke von 5 GW Leistung bei 30 TWh Strom bestehen werde.

Das würde bedeutetn: 6.000 Volllaststunden eines Kraftwerksmit 5.000 MW Leistung. Was in jedem Fall eine virtuelles Kraftwerk wäre, das aus der aggregierten Leistung vieler einzelner Kraftwerke bestehen würde. Technisch wäre eine Turbine dieser Leistung sicher baubar, aber logistisch derzeit nicht mit Brennstoff zu versorgen.

Rein generativ wäre dafür z. B. eine installierte PV-Leistung von 30 GW notwendig, die eine Fläche von ca. 180 km² bedecken würde. Also 0,25%, wobei bereits 13% Bayerns versiegelt sind.

Abgesehen davon, dass der „Energiedialog“ in Bayern tatsächlich ein erweiterter Monolog war, der die Bürger belehren und ein paar besser gestellte und vernetzte Interessenvertreter mit einbeziehen sollte, forderte diese Aussage sofort heftige Proteste heraus. Die Zahlen seien falsch, nicht berücksichtigt sei die weitere Entwicklung der re-generativen, ebenso wenig das Thema Entwicklung des Strombedarfs usw.

Und tatsächlich: Bei der Bedarfsberechnung werden die generativen Stromerzeuger mit Null bewertet. Sonne und Wind decken noch immer keinen Strombedarf. Weder die direkte Nutzung durch die Erzeuger noch die Speicherung wird bewertet. Lediglich Pumpspeicher werden mit 50 % der Nennleistung einberechnet.

Meine eigene Recherchen ergeben:

In Bayern werden zwischen 5,5 GW und 12,5 GW Leistung abgerufen.

Bayern hat

5,3 GW Atomkraft
4,4 GW Erdgas
1,0 GW Mineralöl
0,8 GW Steinkohle
2,0 GW Laufwasser incl. Speicherwasser
1,3 GW Biomasse
1,5 GW Windkraft
10,7 GW Photovoltaik

0,6 GW Pumpspeicherkraftwerke

Das Problem ist die dauerhafte Verfügbarkeit der Erzeuger.

Die ist in direkter Linie nur bei den ersten sechs gegeben.

Das sind zusammen tatsächlich 13,8 GW. Das genügt also augenscheinlich und lässt sogar noch ein paar Reserven übrig.

Wind und Sonne sind zusätzlich da und so gesehen quasi „überflüssig.“ Gehen die 5,3 GW Atomkraft in 2022 vom Netz, dann fehlen also ohne PV und Wind eher 5,3 GW als 5 GW. Allerdings bezieht sich das ausschließlich auf die gerechneten Spitzenlasten, nicht auf den Durchschnitt, nicht auf den Median und sagt noch lange nicht aus,ob,wie, wann und wo diese Lücken möglicherweise auftreten.

Last- und Leistungsspitzen sind im Energiemanagement allerdings schon lange ein Thema, dem mit Speichern begegnet wird. So lange wir aber nicht wissen bzw. nicht nachvollziehen dürfen, wann, wie oft und wo die Lastspitzen tatsächlich auftreten, können wir auch keine alternative Strategie zu Stromtrassen entwickeln, die Speicherkapazitäten sinnvoll einbezieht.

Daraus die Behauptung zu entwickeln, „den Bedarf in Frage zu stellen, ist abwegig“ ist schlichtes Belehren nach Herrenmenschenart und keineswegs Diskussionsbereitschaft.

Man kann es nur wiederholen: Wenn man einen Bedarf als heilige Kuh voraussetzt, dann kann bei einer Betrachtung nichts anderes herauskommen, als eben dieser Bedarf.

Die aktuelle Übertragungskapazität der Netze vom „Ausland“ nach Bayern ist mit ca. 6 GW auch absolut ausreichend, um diese „Stromlücke“, die in Wahrheit eine Leistungslücke ist, zu decken.

Dass dies genau so auch der Fall ist, hat die BNetzA am 21.04.2015 im Lauf der Veranstaltung auch im Wortlaut bestätigt.

Der Stromverbrauch Bayerns liegt heute übrigens bei 93 TWh. Mit den sicher vorhandenen Kapazitäten ohne Kernkraft lassen sich bei ca. 8,5 GW knapp 75 TWh Strom zusätzlich erzeugen. Mehr als doppelt so viel, als angeblich fehlt. Und ohne PV und Wind einzubeziehen. Deshalb ist auch das Märchen von der Stromlücke eben genau das: Ein Märchen. Was fehlt, ist die Möglichkeit, diese 30 TWh in passenden Portionen zur passenden Zeit am passenden Ort = Ort des Verbrauchs – bereit zu stellen. Und genau das lässt sich mit Speichern ebenso machen wie mit Leitungen.

Bayern hat 80.000 statische Ortsnetztrafos (ONT), die zwischen 50 KW und 600 KW Leistung verarbeiten, an den Knoten Niederspannung/Mittelspannung (NS/MS). Die Anpassung dieser ONT an flexiblere Netze durch so genannte RONT (regelbare ONT) kostet laut LEW 2013 29 Mio. Euro pro Stück (regelbare Ortsnetztrafos vom Marktführer Siemens).

Diese ONT lassen sich aber auch spielend innerhalb sechs Jahren mit einer Kombination aus Li-Ion und Redox-Flow-Batterien und Leistungselektronik nachrüsten. 600 KW Leistung bei 2.000 kWh Kapazität sind für ca. 2 Mio. Euro pro Einheit beschaffbar. Allein damit stünden genau an den Ebenen, an denen PV und Wind hauptsächlich eingespeist werden, 48 GW Regelleistung ganzjährig bereit, sowie 160 GWh Energie-Kapazität, über die wir im Tag/Nachtrhythmus bei 320 nutzbaren Tagen 51 TWh Strom zeitlich verschieben können.

Oder auch das Doppelte des durchschnittlichen Tagesbedarfs, der sich aus der angeblichen Stromlücke von 30 TWh ergibt.

Für die vermeintlichen 20 Tage im Winter, in denen es weder Wind noch Sonne gibt, bräuchte es zwar zehn Mal mehr, aber nichts spricht dagegen, die Batterien vorläufig vor allem nachts mit Strom aus bestehenden Kraftwerken und KWK aufzuladen um den Strom tagsüber zur Verfügung zu haben.

Eine letzte Rechtfertigung der Notwendigkeit der Trassen durch Herrn Homann war der notwendige Stromaustausch mit Österreich. Wen wir den nicht hätten! Also deshalb dürften wir ja gar nichts gegen neue Trassen haben.

Ja, aber den Stromaustausch mit Österreich haben wir seit 40 Jahren, weil der essentiell für den Betrieb unserer Kernkraftwerke war. Dafür brauchen wir keine weiteren Leitungen. Es sei denn wir verachtfachen endlich unsere PV-Kapazität auf 80 GW. Das Potential dazu haben wir locker allein auf den Gebäudedächern, die noch immer ohne PV sind. Dann hätten wir auch einen Überschuss von noch einmal ca. 90 TWh, die wir Jahr für jahr exportieren können. Allein Bayern. Dann bräuchten wir allerdings Trassen.

Bemerkenswert an Herrn Homanns Ausführungen war eine Phrase, die er häufig wiederholt: „Aber das weiß ja jeder!“ und der Hinweis auf die Ergebnisse des bayerischen Energiedialogs. Er scheint auch nicht den Unterschied zwischen der CSU und Bayern zu kennen. Nur knapp 26 % der Wahlberechtigten geben der CSU ihre Stimme. Das reicht zwar für die CSU, um allein zu regieren, weil knapp die Hälfte der Wahlberechtigten das zulässt, aber zur Identität mit Bayern reicht das längst nicht mehr.

Ab 14:30 Uhr wurden dann ein paar Fragen zugelassen. Erneut wurden Zweifel an der Bedarfsrechnung geäußert. Herr Homann ist leider stets ausgewichen.

Wie bei solchen Veranstaltungen üblich, waren die Fragerunden von Leuten bestimmt, die Statements abgeben mussten. So wurde geäußert, dass diese Leitungen nur dafür da seien, Kohlestrom mit Hilfe billiger Emissionszertifikate über Bayern bis nach Italien zu verramschen. In der Antwort hieß es, dass wir dem europäischen Emissionszertifikatesystem folgen müssten, da wir Mitglied seien.

Nicht thematisiert wurde, dass sich England und Schweden trotzdem eine zusätzliche CO2-Abgabe leisten. Das könnten wir auch tun und schon wäre der Anreiz weiterhin viel zu billig Braunkohlestrom auf den Markt zu werfen, erledigt. Denn klar wurde dass die HGÜ vordringlich dazu gebraucht werden, den Braunkohlestrom und später zunehmend auch Windstrom auch nach Südeuropa zu transportieren. Wer aber sagt, dass z. B. Italien darauf warten wird, Strom, besonders aus Braunkohle, in Zukunft aus Deutschland zu beziehen?

Wir hätten es ohne weiteres in der Hand, die Energiesteuer mit einem CO2-Faktor (Grad der Emission im Vergleich zu regenerativer Erzeugung aus Biomasse = 1) und dem Primärenergiefaktor (Effizienz) zu variieren. Und bei der Gelegenheit gleich die Vergünstigungen der Kohlebergbaue streichen. Aus den Einnahmen lassen sich dann Emissionszertifikate aufkaufen und / oder Maßnahmen für die Steigerung der Energieeffizienz von Unternehmen finanzieren.

Klar angeschnitten wurde die Angabe im Szenariorahmen, dass der Stromexport von Deutschland ins Ausland bis 2014 von bisher 18 TWh auf 80 TWh steigen soll. Und genau dazu werden die Leitungen gebraucht. Bezahlen dürfen diese die Endverbraucher mit ihren Netzentgelten. Den Nutzen aber haben vor allm Finanzkonzerne. So aber ist das inakzeptabel.

Herrn Homann wurde entgegengehalten, wer Strom wohin liefert entscheide nicht das Netz, sondern der Handel. Dann soll der Besteller gefälligst auch den Transport bezahlen. Diesem Statement ist er ausgewichen und die Diskussion wurde beendet.

Es folgte ein Vortrag von Herrn Zerres, einem Juristen der bei der Bundesnetzagentur beschäftigt ist, zur Prüfung des Netzentwicklungsplans 2024.

Zerres kann man nicht beschreiben, man muss ihn erleben. Im Stile des Erklärbären aus einer gewissen Kindersendung wird der Zuhörer in mäßigem Tempo mit einer recht großen Menge an Informationen gefüttert, die aber alle keinen grundsätzlichen Bezug haben. Dieser Vortrag sollte unbedingt als Video auf Youtube erscheinen.

Zerres fokussiert darauf, dass eine Veröffentlichung der Daten für die Bedarfsberechnung nicht möglich sei, weil zu umfangreich. Man könne nicht die Daten von 60.000 Referenzstellen über 8.760 Stunden bereit stellen. Das würde niemand überblicken.

Muß das überhaupt jemand überblicken? Wäre es nicht sinnvoller, wenn das viele Sachkundige an vielen Stellen überblicken?

Er teilte mit, dass die Stromnetzberechnung aus den Daten der Stromproduktion erfolgen würde. Was bei genauerem Hinsehen aber nicht stimmt. Es sind die Forcast-Handelsdaten aus dem Vorab-Verkauf der theoretischen Produktion aller Kraftwrke mit über 100 MW Leistung in der BRD. Die Potentiale zehntausender kleinerer Anlagen fallen kompleet unter den Tisch. In der Realität nähert sich die Produktion in einem fortwährenden interativen Verfahren über den Handel – sowohl Börse als auch OTC – immer weiter dem realen Bedarf an und wird final durch den so genannten Day-Ahead-Handel definiert und sogar dann noch über Intra-Day-Handel und Re-Dispatch bei spontanen Abnahmeabsagen oder Zusatzkäufen nachjustiert. Dann aber sind die Hochrechnungen der ursprünglichen Daten für die Netzplanungen längst abgeschlossen.

Herr Zerres was es auch, der die Richtigkeit meiner Auffassung, dass die Investoren eine tatsächliche Renditegarantie auf ihr eingesetztes Eigenkapital haben, wortwörtlich bestätigte. Er erläuterte das System noch einmal und wies auch darauf hin, dass der unterschiedliche Renditezinssatz für neue Stromtrassen und bestehende Netze zwar dem Umstand der Abschreibung geschuldet sei, sich aber auf den tatsächlichen Neuwert beziehe. Von daher seien Betreiber alter Netze wirtschaftlich denen neuer Netze gleichgestellt.

Meiner Meinung nach liegt dort der systematische Fehler an der Sache, da dadurch die Produktion die Parameter für die Verteilung ihres Produkts festlegt. Statt der Nachfrage. Wie weiter oben angeschnitten führt das zu weiteren Schlüssen, die nur deshalb folgerichtig sind, weil sie zu dem Ergebnis führen, das sie zunächst voraussetzen.

Sollte dieser Modus weiter beibehalten werden, dann wird eine echte „Energiewende“ erst dann wirklich beginnen, wenn es eine definitive und unumkehrbare politische Entscheidung zum Ausstieg aus Kernkraft, Kohle Öl und Gas gibt.

An der Stelle ist es geboten auf eine oft gehörte Aussage hinzuweisen: Der sogenannte „Anteil der erneuerbaren am Strom“, der oft plakativ und beifallheischend mit hohen Prozentzahlen publiziert wird, ist meist lediglich ein Leistungsanteil. Er bezieht sich auf so und so viel Gigawatt der Erzeugung zu einem bestimmten Zeitpunkt. Entscheidend wird jedoch sein, welche Menge an Strom mit Wind und PV zukünftig produziert wird. Und da sind wir noch meilenweit von Erfolgsmeldungen und Hurrageschrei entfernt.

Die bemerkenswerteste Aussage von Herrn Zerres war die Bestätigung, dass die garantierte Rendite für Netzbetreiber Realität ist und keine fiktive Obergrenze, die sowieso nicht erreicht wird.

Auf die Frage, mit welchen Begründungen die in dem festgelegten Prozentsatz enthaltenen Risikozuschläge berechtigt sind, konnte er keine Antwort geben. Kein Wunder: Es gibt schlicht keine Risiken. Danach gefragt: Es sind keine bekannt. Das ist Sache der Verhandlungspartner. Die Netzbetreiber brauchen aber größtmögliche Sicherheit.

Des weiteren gab es von ihm noch eine Reihe von Informationen über technische Parameter zur Kalkulation von Leitungen, ein Statement, dass die BnetzA keinen Vollausbau plant und dass die BnetzA der Meinung sei, die Maßnahmen seien allesamt bestätigungsfähig.

Das Problem daran erkennt auch er nicht: Die Bestätigungsfähigkeit zu bestätigen ist das Ziel des Verfahrens und bestimmt deshalb die Parameter. Mit anderen Worten: Das Verfahren ist nicht technologieoffen und betrachtet das Ganze aus einem einzigen Ansatz: Dem einer hemmungslosen Zentralisierung,  zentralen Kontrolle und faktisch kompletten Sozialisierung aller wirtschaftlichen Risiken. Zentralisierung und zentrale Kontrolle  haben dabei glasklar die Funktion, diese Sozialisierung der Risiken sicherzustellen.

Sein Abschlussstatment: Das EEG sei der große Trigger des Netzausbaus. Dass der Wachstumseffekt des EEG politisch komplett ausgebremst wurde, ist in der Realität der Berechnungsverfahren der BNetzA noch nicht angekommen.

Es folgte ein Vortrag von Herrn Otte von der BnetzA zur Erläuterung der strategischen Umweltprüfung, auf den ich hier nicht eingehen will, weil ich mich auf den Aspekt Stromversorgung beschränken möchte. Wird keine Stromtrasse gebraucht, und wird sie nicht gebaut, dann wird es auch keine Umweltfragen in dem Zusammenhang geben.

Den Bedarf in Frage zu stellen geht daher vor.

Anschließend gab es einen Vortrag von Herrn Nolde zum Thema „Alternativen zum Netzausbau“.

Er begann mit Thesen, die für ihn und offenbar für die BnetzA Gesetze sind:

– „Wir können nicht beliebig viel Speichern“
– „Die Einspeisung folgt dem freien Marktgeschehen“
– „Es geht um die Sicherung des Marktgeschehens im europäischen Kontext“

Zu These 1: Ja, das ist logisch. Warum sollten wir das auch wollen? Wir sollten einfach so viel Speichern, wie volkswirtschaftlich sinnvoll und notwendig ist, um unseren gesamten Strombedarf durch PV und Windkraft zu decken. Das müssen keine 100 % des Strombedarfs als Speicherkapazität sein, eher ca. 30 %. Der Bedarf an Speicherkapüazität liegt dmit bis 2035 bei ca. 200 TWh und bis 2050 bei vermutlich 400 TWh.

Das wird aber nur gelingen, wenn wir Batteriespeicher gleichberechtigt als technische Alternative zu Netzen behandeln. Und das würde bedeuten, Betreibern von Speichern mindestens genauso viel Geld für jede innerhalb einer Spannungsebene oder eines Verteilnetzes eingespeiste kWh zu bezahlen, als Netzentgelt fällig wäre.

Zu These 2: Der Zusammenhang zwischen „freiem Marktgeschehen“ und Einspeisung aus verschiedensten Erzeugungsarten, von denen nahezu jede in unterschiedlicher Weise von festgelegten Vergütungen, aktuellen Subventionen oder Beihilfen oder gigantischen Vorleistungen aus Steuermitteln aus der Vergangenheit profitiert und gleichzeitig keine einzige ernsthaft für die Folgekosten ihrer Erzeugung zur Verantwortung gezogen wird, ist nicht erkennbar. Genauer gesagt ist dieser Zusammenhang nicht gegeben. Die noch am ehesten einer tatsächlich der „freien Marktwirtschaft“ entsprechende Einspeisung von Strom in Deutschland weisen lediglich Gas- und Dieselkraftwerke auf, wenngleich sie auch keine Belastungen auf Grund ihres CO2-Ausstoßes erfahren.

Den Vergleich dazu hält am ehesten noch das geplante Atomkraftwerk Hinkley-Point in England aus, das ebenfalls zumindest ohne direkte Subventionen auskommen muss, wie auch unsere „modernen“ Gaskraftwerke. Bei diesem AKW fällt auf, dass es eigentlich nur durch eine garantierte Einspeisevergütung von mittlerweile 12,5 Cent/kWh wirtschaftlich betrieben werden kann. Kalkuliert man ein Gaskraftwerk, das wie Irsching ohne Verkauf der Abwärme bestehen können muss, kommt man auf einen ziemlich ähnlichen Betrag der notwendig wäre, derzeit nur ein wenig begünstigt durch den viel zu niedrigen Gaspreis am Weltmarkt.

Auch PV-Strom wird derzeit in Deutschland für diesen Betrag vergütet. Die Größenordnung 12,5 Cent/kWh deutet auch in etwa den realen Wert einer kWh Strom an. Ich stelle deshalb die Frage, woran es wohl liegen mag, dass Strom am „Markt“ für weniger als 3 Cent / kWh verfügbar ist. Und warum sich niemand an den derzeit in Verantwortung stehenden Stellen ernsthaft gründliche Gedanken über alle Zusammenhänge macht. Dann wird er feststellen, dass wir derzeit Strom auf Kosten der nachfolgenden Generationen weit unter Wert verschleudern. All das wird finanziert durch einen gewaltigen Schuldenberg, der im Lauf der letzten Jahrzehnte auf derzeit ca. 2,4 Billionen Euro Verschuldung der öffentlichen Hand angewachsen ist, während im selben Zeitraum über 400 Mrd. Euro in die Subventionierung von Kohlestrom geflossen sind und über 220 Mrd. Euro in die Subventionierung von Kernkraft, aktuell laufend pro Jahr weitere 40 Mrd. Euro in die Subventionierung der konventionellen Energiewirtschaft fließen und zusätzlich den nachfolgenden Generationen nicht nur die Schulden und die Zinsen, sondern auch die Umweltfolgen samt deren Kosten hinterlassen werden. Letztere sind in den ca. 12,5 Cent / kWh noch gar nicht enthalten.

These 3: Wer auch immer an ein zukünftiges System vieler dezentraler Erzeuger glaubt, die sich gegenseitig ergänzen und unterstützen, oder wer sich diese Zukunft wünscht, der wird hier durch vermeintlich höhergestellte Vernunft eines „Besseren“ belehrt. Realität werden soll, irgendwie und womöglich mit hohen Subventionen erzeugten Strom wenn es sein muss von Estland nach Portugal zu transportieren. Denn das „Marktdesign“ für Stromtrassen beruht auf gesicherter Rendite für Investoren.

Wenn mir jemand eine leicht bewältigbare Aufgabe mit für 20 Jahre gesichertem üppigen Grundeinkommen anböte und ich noch nicht mal Ja sagen müsste: Den Arbeiotsplatz nähme ich sofort an.

All das geünscht, gefördert und gefordert von einer Industrie und einer Wirtschaft, die ähnlich lang laufende Arbeitsverträge und großzügig gesicherte Renditen für Arbeitskraft = anständige Mindestlöhne als wirtschaftsfeindlich und wachstumsschädigend betrachtet.

Was hat all das mit einer echten Wende in der Energieerzeugung zu tun? Richtig. Rein gar nichts. Hier geht es nur um Geschäftsmodelle für Investoren. Rein technisch ist all das überflüssig bzw. erst dann notwendig, wenn alle lokalen Ressourcen an PV in der Fläche und an Wind ausgeschöpft sind und der zur lokalen Nutzung vor Ort erzeugten Stroms notwendige Bedarf an Speichern errichtet ist.

Doch über welche Alternativen wurden wir von Herrn Nolde unterrichtet?

1. Redispatch: Der wird noch in größerem Umfang als früher durchgeführt werden müssen und ist in den letzten Jahren bereits gestiegen. Dies liegt nach Herrn Noldes Worten angeblich daran, das der Netzausbau mit dem Ausbau an „Erneuerbaren“ (- der mit dem neuesen EEG auf unabsehbare Zeit = solange Union, SPD, FDP an Regierungen beteiligt sein sollten, nicht mehr stattfinden wird – ) nicht mithalten kann. Re-Dispatch, was ist das? Es geht ganz platt gesagt darum, im Fall eines Engpasses auf einer Seite eines Netzknotens durch zu viel Strom Kraftwerksleistung zu senken und auf der anderen Seite zu steigern. In der Realität wird allerdings oft nur auf der Seite mit dem Mangel die Kraftwerksleistung angehoben und der auf der anderen Seite  überschüssige Strom über andere oder weitere Netze in weiter entfernte Regionen gedrückt, selbst wenn dafür auch noch Geld bezahlt werden muss. Und nur, um die Flexibilitätsoption Speicher zu verhindern. Denn Strom geht immer den Weg des geringsten Widerstands. Habe ich links vom Netzknoten eine zu große Menge, dann kann ich rechts die Leistung sogar erhöhen, um auszugleichen und den Stromzufluss von links nach rechts begrenzen. Und den Überschuss auch in weitere Richtungen zu lenken.

Da Redispatch aber sehr teuer ist und zudem einen Eingriff in den „freien Markt“ bedeutet, ist Redispatch keine Alternative.

2. Die zweite Alternative wäre eine Marktteilung. Man könnte z. B. Deutschland in zwei Marktzonen teilen – oder mehrere. Dann würden unterschiedliche Preiszonen entstehen. Dies wiederum würde bedeuten, dass eine geringere Bandbreite an Erzeugungsarten zur Verfügung steht und deshalb die Preise steigen werden und die Erzeugung weniger effizient wird.

3. Erzeugung und Verbrauch näher zusammenbringen. Dann wären die Stromtrassen überflüssig. Das aber würde bedeuten, dass die Industrie als größter Verbraucher vom Süden in den Norden umsiedelt, oder dass viele kleine Kraftwerke bei den Unternehmen vor der Tür oder in Städten gebaut werden.

Wie dem auch sei, bei all diesen Argumenten werden Speicher überhaupt nicht erwähnt. Und genau das ist der größte Fehler an der gesamten Planung. Aber warum sollte sich eine Bundes-Netz-Agentur auch für Speicher interessieren. Sie ist ja keine Bundes-Speicher-Agentur.

Scherz beiseite: Über Speicher wird dort so gedacht, dass diese nicht wirtschaftlich und nicht in großem Maßstab herstellbar sind.

Beide Ansichten können bereits heute in weitgehendem Umfang widerlegt werden, was hier aber zu weit führen würde.

Eines jedoch ist deutlich: Es wäre mindestens notwendig, Speichern die gleichen Ertragsgarantien zu gewähren wie Netzen. Entweder bezüglich der Einnahme pro gespeicherter kWh oder eine Speichervergütung nach Aufwand oder gar eine Renditegarantie auf den Invest. Letzteres würde aber mit Sicherheit zu Wildwuchs und einer renditegetriebenen Investionsblase führen.

Anschließend an Herrn Noldes Vortrag gab es noch einen Vortrag von Frau Dr. Gunde Ziegelberger zu der Elektromagnetischen Verträglichkeit.

Insgesamt war die Veranstaltung erhellend, bei den Mitarbeitern der BnEtzA die vor Ort waren, war durchaus eine sehr starke Offenheit für die Gedanken und Anliegen der Bürger zu erkennen. Oder alle Vertreter der BNetzA werden entsprechend an Schauspielschulen geschult.

Das Vorgehen ist zwar als eine Art Frontalunterricht angelegt, aber meiner Wahrnehmung nach mehr mangels Ideen, wie man es besser machen könnte.

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt