Schlagwort-Archive: Emissionen

Unklarheiten und Widersprüche betreffend die Energiepolitik zwischen EU und BRD

Textausarbeitung zum VORTRAG über die Unklarheiten und Widersprüche zwischen den Ebene EU und BRD betreffend die Energiepolitik und den Ausbau leistungsfähiger Übertragungsnetze

 

Es bestehen klare Diskrepanzen auf den Ebenen EU – BRD zwischen Methodologie, Bewertungsgegenständen, in Betracht gezogener Technik, Datenauswahl, Zielen der Netzverstärkung, Begründungen und Zukunftsprognosen für das europäische System zur Versorgung mit elektrischer Energie. Auf diese hinzuweisen ist der Sinn dieser Übung, des Vortrags und meiner Ausarbeitung. Kommentare Gedanken und Trollerei meinerseits sind kursiv gestaltet..

  • Energiewende, Netzausbau, wer blickt da eigentlich noch durch?
  • Braucht‘s das?
  • Welchen Nutzen – und damit Sinn – ergibt das?
  • Woher kommt der Bedarf?
  • Wohin kann die Reise gehen?
  • Wohin soll Sie gehen?
  • Orga-Foo – Wer ist für was zuständig, wer auf EU-Ebene, wer auf Staatsebene? – und Diktion /Begriffe
  • Power, Leistung, Arbeit, Energie, Kapazität, Übertragung und Verschiebung.
  • 1. ENTSO-E vs. BNetzA und ACER VS NRA oder Regulierungsbehörde
  • 2. TSOs / DSOs VS ÜNB / VNB
  • 3. EC / EP VS Regierungen / regionale Parlamente
  • 4. RSC – Regional Security Coordinators / Regionale Sicherheitskoordinatoren vs. NN
  • 5. BEUC – Bureau Européen des Unions de Consommateur / Europäischer Verbraucherverband VS NN

 

  • 2. Ziele / Goals – Was wollen die einzelnen Akteure erreichen? Gemeinsamkeiten / Unterschiede. TYNDP und Szenariorahmenentwurf im Vergleich

 

  • 1. TYNDP 2016 … Europas Klimaschutzziele bis 2030 erreichen (TYNDP exec. 2016 S. 3) … VS NN
  • 2. Die Verschiebung großer Mengen RES (TYNDP exec. 2016 S. 3, 6) … VS NN
  • 3. 80% der Emissionen werden bis 2030 abgebaut sein (TYNDP exec. 2016 S. 3) VS als Nebenbedingung vorzugeben, so dass der deutsche Kraftwerkspark im Jahr 2030 maximal 165 Millionen Tonnen CO2 emittiert (2035 137 Mi. to / SRE S. 5) und Reduktion der Treibhausgas-Emissionen gegenüber 1990 bis 2020 um 40% und bis 2030 um 55%. (SRE S. 70) / § 1 EEG-E 2016: 40% bis 45% bis zum Jahr 2025 / 55% bis 60% bis zum Jahr 2035 / mindestens 80% bis zum Jahr 2050. Dieser Ausbau soll stetig, kosteneffizient und netzverträglich erfolgen. (SRE S. 80)
  • 4. Eine Durchdringung von mindestens 27% RES (TYNDP exec. 2016 S. 5) VS RES-Ausbaukorridor des § 1 Abs. 2 EEG-E 2016 (SRE S. 70)
  • 5. Mindestens 27% Energieeinsparung (TYNDP exec. 2016 S. 3) VS Senkung des Primärenergieverbrauchs gegenüber 2008 bis 2020 um 20% (SRE S. 5)
  • 6. Reduktion der Engpasssituationen um 40% (congestion / TYNDP exec. 2016 S. 15) VS Bestehende und nach den Bedarfsprognosen zu erwartende Netzengpässe sind zu vermeiden, um insbesondere die gesamte Energie der Stromerzeugungsanlagen aufzunehmen und weiterleiten zu können (SRE S. 77)
  • 7. 2030 Entwicklung der künftigen Betriebsführung und des Marktdesigns steht erst noch an (TYNDP exec. 2016 S. 32) VS Bei der Ermittlung der Szenarien ist grundsätzlich von den aktuellen rechtlichen und regulatorischen Rahmenbedingungen auszugehen, da die Entwicklung der gesetzlichen Grundlagen bis 2030 bzw. 2035 ebenso wenig vorhersehbar ist wie die Entwicklung der Marktpreise oder die Verbreitung neuer Technologien (SRE S. 73).
  • 8. Versorgungssicherheit (= SoS, TYNDP exec. 2016 S. 36, 41) VS Aufgabe des Netzentwicklungsplans ist, im Grundsatz ein Netz zu planen, das ohne teure Re-Dispatch-Maßnahmen sicher funktioniert (SRE S. 86).
  • 9. Die Netzentwicklung ist das zentrale Instrument um die Ziele der Energieunion zu erreichen VS Die Bundesnetzagentur ist weiterhin der Ansicht, dass das volkswirtschaftliche Optimum in einem deutschlandweiten bzw. europaweiten Energiemarkt liegt. Die Netze dienen auch dazu, diesen Markt zu ermöglichen (SRE S. 97).
  • 10. Der TYNDP 2016 operiert mit einem erweiterten Blickwinkel: Er sorgt für ein transparentes Bild des Europäischen Übertragungsnetzwerks für Elektrizität. VS Ablehnung von Transparenz und Öffentlichkeit durch ENWG.
  • 11. Einen Ausbauschub für die Infrastruktur mit einem Mehr lokaler Erzeugung, Speicherung und Nachfragemanagement (TYNDP exec. 2016 S. 43) VS NN
Annual Work Programme 2018 vs. SRE

 

  • 12. Bewältigung der globalen Herausforderungen mit denen die Welt konfrontiert ist: Globale Erwärmung, Ökonomische Wettbewerbsfähigkeit, und Versorgungssicherheit (AWP s. 4) VS zu gewährleistenden wichtigen Ziele der Versorgungssicherheit und der Umweltverträglichkeit durch zu gering dimensionierte Netze (SRE S. 78)
  • 13. Übermittlung der Botschaft der EU-Kommission ‘Saubere Energie für alle Europäer2 vom November 2016, (S. 7) VS NN
  • 14. Nachhaltigkeit, SoS, Wettbewerbsfähigkeit und gesellschaftliche Wohlfahrt (AWP S. 8) VS NN
  • 15. Verknüpfung von 23 in einem Ein-Tag-vorab-Markt (AWP S. 8) VS „die Bundesnetzagentur ist weiterhin der Ansicht, dass das volkswirtschaftliche Optimum in einem deutschlandweiten bzw. europaweiten Energiemarkt liegt. Die Netze dienen auch dazu, diesen Markt zu ermöglichen (SRE S. 97).
  • 16. Integration von 260 GW of PV & Wind (AWP S. 8) VS Ausbauziele EEG
  • 17. 11 GW Nachfragemanagement (AWP S. 8) vs. NN
  • 18. Erhalt der Versorgungssicherheit (AWP s. 8) VS ist die Versorgungssicherheit in den einzelnen Regionen selbst bei einer verbrauchsnahen Erzeugung aus Erneuerbaren Energien ohne Netzausbau nicht vollständig gewährleistet (SRE S. 97)
  • 19. 1 Milliarde € Zuwachs an gesellschaftlicher Wohlfahrt (AWP S. 8) VS NN
  • 20. ± 120 TWh Energieaustausch / Jahr (AWP S. 8) VS NN
  • 21. Umsetzung eines einzigen, gemeinsamen Energiemarkts in ganz Europa (S. 10) VS “Volkswirtschaftliches Optimum eines deutschlandweiten oder europaweiten Energiemarktes” (SRE S. 97)
  • 22. Wird zu einem klar effizienteren Europäischen Markt führen und den Verbrauchern Vorteile bringen (AWP S. 10) VS NN
  • 23. Integration der Verbraucher als aktive Marktteilnehmer (AWP S. 17) VS NN
  • 24. Interkonnektivitätsziel bis 2030 15% (AWP p. 17) VS NN
  • 25. Nachhaltiger Übergang (AWP S. 17) VS NN
  • 26. Verstreute Erzeugung (AWP S. 17) VS NN
  • 27. Globales Handeln für das Klima (AWP S. 17) VS NN
  • 28. Klares Ziel ist, das europäische Energiesystem in ein vollständig integriertes umzuwandeln (AWP S. 20) VS NN
  • 29. Hervorhebung der Faktoren Flexibilität, Speicherung, und Ende-zu-Ende Digitalisierung, um verschiedenste Technologien und Dienstleistungen am Markt zu integrieren (AWP S. 20) VS NN
  • 30. Die ENTSO-E wird einen europäischen Elektrizitätsmarkt als Modell definieren, der auf Verordnungen und Richtlinien für das gesamte Netzwerk basiert (AWP S. 26) VS NN
  • 31. Die BEUC sorgt dafür, dass von Anfang an Austausch mit Endverbrauchern stattfindet, um deren Input sie selbst deutlich Betreffendes zu ermöglichen und zu vermeiden, dass sie sich als an das Ende des Gestaltungsprozesses der Verordnungen gesetzt wiederfinden (AWP S. 40) VS NN
  • 32. Ausbau des grenzüberschreitenden gegenseitigen Handels im Dayahead-Bereich: (Vortagesmarkt vor Echtzeitmarkt) und Intraday-Zeitrahmen (AWP S. 10) VS. Die Bundesnetzagentur ist weiterhin der Ansicht, dass das volkswirtschaftliche Optimum in einem deutschlandweiten bzw. europaweiten Energiemarkt liegt. Die Netze dienen auch dazu, diesen Markt zu ermöglichen (SRE S. 97).

 

  • 3. Mittel / Means: Welche Mittel werden eingesetzt?

 

  • 1. Übertragung (TYNDP exec. S. 3, 43, 45, ff) VS Übertragung: (2) ÜNB sind verpflichtet, auf Grundlage der unter Ziffer 1 genehmigten installierten Erzeugungsleistung für die Szenarien B 2030 und C 2030 zur Ermittlung des Transportbedarfs der Marktsimulation … (SRE S. 5) (Konflikt EU-D vorprogrammiert)
  • 2. Speicherung (TYNDP exec. S. 3, 43, 45, ff) VS in den Szenarien erstmalig zusätzlich verschiedene Werte für Treiber der Sektorenkopplung, Flexibilitätsoptionen sowie dezentrale Speicher vorgegeben (SRE S. 70); … Flexibilitätsoptionen und Speicher: (SRES. 88); … bislang fehlender Speichertechnologien, die geeignet sind (SRE S. 97) … (Speicher sind in D KEINE Option)
  • 3. Nachfragemanagement (TYNDP exec. S. 3, 6) VS Demand Side Management zwei Arten, Lastabschaltung und Lastverlagerung Lastabschaltung: versteht man eine temporäre „Kappung“ dafür geeigneter Lasten, die nicht nachgeholt wird. Diese führt im Ergebnis zu einer Reduzierung des Stromverbrauchs. Bei der Lastverlagerung wird eine geeignete Last verschoben S. 89, Stromverbrauch unverändert… (Zu beachten: Das unterschiedliche Verständnis, was das technisch bedeutet)
  • 4. Steigerung der Effizienz (TYNDP exec. S. 3) VS „Innovation bezeichnet in diesem Zusammenhang den Einsatz neuer Technologien im Stromsektor zur Steigerung der Flexibilität und der Energie-sowie Emissionseffizienz (S. 70); in Szenario A 2030 und B 2030/2035 sowie C 2030 ergänzend Effizienzsteigerungen in Höhe von 27,5 TWh und 32,5/42,3 TWh sowie 55 TWh angenommen, die sich in einer signifikanten Reduktion … niederschlägt (SRE S. 74)

 

Annual Working Programme vs. SRE

 

  • 5. Detaillierte Bewertungsbögen für Projekte zur Verschiebung und Speicherung (AWP S. 3) VS NN

 

Der gegenwärtige methodische Stand der Kosten-Nutzen-Analyse (CBA), entwickelt seitens ENTSO-E in Zusammenarbeit mit den Interessenvertretern und ACER, wurde von der EU-Kommission im Februar 2015 offiziell genehmigt. Die Bewertung von Projekten im Rahmen des TYNDP 2016 gemäß dieser CBA-Methodologie wird wie von der EU-Richtlinie 347/2013 vorgesehen durchgeführt. Der vorangegangenen TYNDP 2014 wurde bereits weitgehend auf Basis einer nahezu finalen CBA-Methodologie erstellt, wobei die in diesem Prozess erkannten Gegebenheiten auf den TYNDP 2016 Einfluss nahmen. Die CBA-Methodologie sorgt für eine Bewertung aller TYNDP-Projekte an Hand vielfältiger Kriterien, die sich über eine breite Spanne von Indikatoren erstreckt, wie im nachfolgenden Schema dargestellt. Übersetzung des Texts in der folgenden Abbildung

 

 

  • 6. Interkonnektivitätsziele der EU VS (3) Um den Netzentwicklungsbedarf zu reduzieren, sind die ÜNB in allen Szenarien verpflichtet, auf Grundlage der unter Ziffer 1 genehmigten installierten Erzeugungsleistung für die Ermittlung des Transportbedarfs eine reduzierte Einspeisung aller Onshore Windenergie-und Photovoltaikanlagen (Bestands-und Neuanlagen) zu Grunde zu legen. (SRE S.5) … Allerdings müssen die Szenarien B 2035 und C 2030 die Ausbaupfade des § 4 EEG-E 2016 leicht überschreiten, um die prozentualen Ausbauziele des § 1 Abs. 2 EEG-E 2016 einhalten zu können (SRE S.74)

 

 

  • 7. Marktflussstudien (AWP S. 15) VS NN

 

  • 8. Das optimale Interkonnektivitätsziel für die Kapazitäten in 2030 muss “den Kostenaspekt ebenso wie das Handelspotential in den betreffenden Regionen in Rechnung stellen“. (AWP S. 17 VS. NN
  • 9. Es gilt ein 15%-Ziel, bezogen auf die installierte Kapazität für 2030 (AWP S. 17) VS NN
  • 10. Es gilt bessere qualitative und quantitative Maßstäbe ausfindig zu machen, wie Handelsflüsse, Spitzenlasten und Flaschenhälse, die klar herausstellen, wie viel Interkonnektivität benötigt wird.“ (EP, ITRE, Dez./15 // AWP S. 17/18) VS Bestehende und nach den Bedarfsprognosen zu erwartende Netzengpässe sind zu vermeiden, um insbesondere die gesamte Energie der Stromerzeugungsanlagen aufzunehmen und weiterleiten zu können (AWP S. 77)
  • 11. Beobachtung, Vorhersage und Überwachung der verstreuten RES-Erzeugung und Leistungsmanagement (AWP S. 24) VS NN (Nicht etwa Erzeugungsmanagement oder Lastmanagement)
  • 12. Gesicherte Einführung des Dynamic Line Rating erweist sich daher als ein Projekt pan-europäischer Bedeutung VS NN http://ieeexplore.ieee.org/abstract/document/545961/?reload=true
  • 13. PCI-Auswahlprozess, PCI-Leitvorhaben können zu nationalen Übertragungsvorhaben angemeldet werden VS NN
  • 14. Der zweite Schlüssel liegt in einer verbesserten Erläuterung von Warum und wie von Vorhaben VS NN
  • 15. Betriebsführung und Marktdesign für 2030 sind noch zu entwickeln VS „Im Rahmen dieses Netzentwicklungsplans Strom – Version 2017 (NEP 2030) erfolgt erstmalig eine modellgestützte Analyse der nationalen und regionalen Stromnachfrage sowie Last mit hoher Granularität“.

(S. 7. Fraunhofer_ISI_2017_Netzentwicklungsplan_Strom).

 

 

  • 16. Laufende Zustandsanalyse für den TYNDP mit einer Auflösung in einem einstündigen Zeitfenster (AWP S. 32) VS Entgegen dem Vorgehen bei klassischen Stromanwendungen wird das Lastmanagement neuer Stromanwendungen nicht in der Marktsimulation modelliert, sondern in einem eigenständigen Lastmodell (Elektromobilität / SRE S. 90)
  • 17. Technische Mittel zur Kontrolle von Frequenz und Spannung (AWP S. 32) VS Einsatz „intelligenter“ Netztechnik (z. B. regelbare Ortsnetztransformatoren / SRE S. 77)
  • 18. IT-gestützte Technologie an PV und Windanlagen zur Trägheitssimulation und Frequenzkontrolle gegenüber einem deutlich geringeren Grad an Einbeziehung konventioneller Erzeugung VS NN
  • 19. pan-europäische Netzwerk-Normen für die Vernetzung (AWP S. 32) VS NN
  • 20. operative Leitfäden (AWP S. 32) VS NN
  • 21. Ausbau der Schnittstellen ÜNB/VNB (AWP S. 32) VS NN
  • 22. Inrechnungstellung technologischen Fortschritts, der in jedem Fall einen virulenten Faktor für die Konsistenz der getroffenen Annahmen für die Erzeugung darstellt (AWP S. 32) VS NN
  • 23. Ausformulierte Entwicklungsdarstellungen der Szenarien werden notwendige Antworten auf die Fragen für das Handling des Stromsystems und die Profitabilität geben (AWP S. 36) VS NN
  • 24. Marktmodellierung (S. 36 / AWP S. 5) VS (vgl. Fraunhofer ISI & SRE) sind die Übertragungsnetzbetreiber verpflichtet, auf Grundlage der installierten Erzeugungsleistung für die Ermittlung des Transportbedarfs in allen Szenarien (SRE S. 77)
  • 25. Nachfragemanagement (DSR/ AWP S. 36) VS NN
  • 26. Die Identifikation systemischer Notwendigkeiten wird grundsätzlich auf pan-europäischen Marktstudien beruhen (um Zielkapazitäten abzuleiten…) VS NN

 

  • Einschub:
  • 26.1. Beachtenswert hier: Der SRE gibt keine Auskünfte darüber, sehr wohl aber die Fraunhofer ISI-Studie, die eine gesonderte Betrachtung wert ist.: Die Jahreshöchstlast ist die maximal in einem Jahr zu einem bestimmten Zeitpunkt auftretende Summe der Leistung aller angeschlossenen Verbraucher am Verteil-und Übertragungsnetz inklusive der Summe der durch den Transport entstehenden Verlustleistung im Verteil-und Übertragungsnetz (S. 106). Fraunhofer_ISI_2017_Netzentwicklungsplan_Strom:

Hierzu wurde eine methodische Vorgehensweise entwickelt, die auf sequentiell aufeinander aufbauenden Modellanalysen basiert. Für die Untersuchung der jährlichen Nachfrage kommt das Energienachfragemodell FORECAST zum Einsatz, das als technologiebasierter Bottom-up-Ansatz konzipiert ist. Für die Ermittlung der Lastprofile wird das Lastgang-Modell eLOAD eingesetzt, das auf einer breiten Datenbasis von technologiespezifischen Lastprofilen basiert. Des Weiteren wurde eine Methodik zur Abschätzung der Marktdiffusion von dezentralen Solarstromspeichern ermittelt (S. 7).

Ein wesentlicher Bestandteil des NEP 2030 ist eine detaillierte Analyse der nationalen Stromnachfrage und Last (S. 10). Bisher ist keine tiefergehende Analyse von zeitlichen Dynamiken in Form von energie- und klimapolitischen Maßnahmen, technologischen sowie strukturellen Entwicklungen erfolgt (S. 10).

Für die Ermittlung der Lastprofile kommt das Lastgang-Modell eLOAD (energy load curve adjustment tool) zum Einsatz, das auf den jährlichen Stromnachfrage-Mengen aus dem FORECAST-Modell aufbaut. (ISI S. 11)

 

  • 27. Neun Indikatoren die von sozioökonomischer Wohlfahrt bis Umwelteinwirkungen reichen (AWP S. 40) VS NN
  • 28. Gemeinsam mit aktuellen Technologien, werden innovative Technologien in die existierenden Infrastrukturen inkorporiert (AWP S. 43) VS Einsatz intelligenter Netztechnik (z. B. regelbare = “intelligent” Ortsnetztransformatoren / SRE S. 77).
  • 29. Projektträger, Regulierer und Politikschaffende müssen selbst etliches von jeder Technologie deren Verfügbarkeit verstehen (AWP S. 43) VS. NN
  • 30. Die gesetzliche Grundlage findet sich im 3. EU-Gesetzespaket für den Energiebinnenmarkt von 2009 VS EnWG und EEG
  • 31. Die digitale Revolution – die 4. industrielle Revolution (AWP S. 4) VS NN
  • 32. Richtlinie zur Bilanzierung von Elektrizität, März 2017 (AWP S. 5) VS NN https://electricity.network-codes.eu/network_codes/eb/
  • 33. Transparenzplattform (AWP S. 5) VS NN (§12f)
  • 34. Öffnung für bidirektionalen Datenfluss zwischen nationalen Operatoren und regionalen Servicezentren (Leitwarten) VS NN (Datenschutz, §12f EnWG)

 

 

  • 35. Transformation unserer Transparenzplattform in ein marktdienliches Instrument: eine einheitliche, intuitive nutzbare und nutzerfreundliche Plattform zur Zentralisierung von Daten aus dem gesamten Binnenmarkt für Elektrizität. (AWP S. 5) VS NN
  • 36. Gesetzliche Marktregeln bringen die Marktintegration voran, um mehr Wettbewerb und Ressourcenoptimierung zu erhalten. Sie legen Regeln für die Kalkulation der Kapazitäten, Vortags- und Echtzeitmärkte wie Prognosemärkte fest VS. NN
CACM-Regeln (Capacity Calculation  /AWP S. 6) vs. NN bzw. VO EK 2015-1222

 

  • 37. THE CACM REGULATION (AWP S. 10) VS NN – (VO EK 2015-1222 Netzkodex Leitlinie für Kapazitätsvergabe und Engpassmanagement.pdf S. 1): … b) eine Analyse der Frage, ob die auf den Märkten für langfristige Kapazität angebotenen Produkte oder Produktkombinationen effizient sind. In diesem Zusammenhang werden mindestens folgende Indikatoren bewertet: i) Handelshorizont; ii) Differenz zwischen Kauf- und Verkauf- Angebotspreis; iii) gehandeltes Volumen im Verhältnis zum physikalischen Verbrauch; iv) Offene Positionen im Verhältnis zum physikalischen Verbrauch;)
  • und –
  • Zu diesem Zweck sollten sie ein gemeinsames Netzmodell bilden, das für jede Stunde Schätzungen zu Stromerzeugung, Last und Netzstatus einschließt. Die verfügbare Kapazität sollte in der Regel anhand der sogenannten lastflussbasierten Berechnungsmethode berechnet werden, d. h. einer Methode, bei der berücksichtigt wird, dass Strom über verschiedene Pfade fließen kann, und bei der die verfügbare Kapazität in stark voneinander abhängigen Netzen optimiert wird.

 

  • Einschub: An der Stelle ist es wichtig, auf einige auch im Inland geltende Verordnungen der EU hinzuweisen, in denen sehr wohl sehr bestimmte Vorbedingungen geschaffen werden, deren Wirkung die BNetzA im Gegensatz zu Ihrer großen Schwester ENTSO-E in ihrem Report nicht erläutert oder benennt:

 

  • 37.1 VO EK 2016-1719 Netzkodex Leitlinie für langfristige Kapazitätsvergabe.pdf

 

  • 37.2. Berechnung langfristiger Kapazität für den Year-Ahead- und für den Month-Ahead-Marktzeitbereich
  • 37.3. Der lastflussgestützte Ansatz könnte angewandt werden, wenn die zonenübergreifenden Kapazitäten zwischen Gebotszonen in hohem Maße voneinander abhängig sind und der Ansatz unter dem Gesichtspunkt der wirtschaftlichen Effizienz gerechtfertigt ist.
  • 37.4. In dieser Verordnung werden detaillierte Bestimmungen für die Vergabe zonenübergreifender Kapazität auf den Märkten für langfristige Kapazität … festgelegt.
  • 37.5. Diese Verordnung gilt für alle Übertragungsnetze und Verbindungsleitungen in der Union
  • 37.6. In Mitgliedstaaten mit mehr als einem ÜNB gilt diese Verordnung für alle ÜNB innerhalb dieses Mitgliedstaats
  • 37.7. Zeitbereiche für die Kapazitätsberechnung Alle ÜNB in jeder Kapazitätsberechnungsregion sorgen dafür, dass die langfristige zonenübergreifende Kapazität für jede Vergabe langfristiger Kapazität und mindestens für Jahres- und Monatszeitbereiche berechnet wird.
  • 37.8. Für die gemeinsame Kapazitätsberechnungsmethode wird entweder ein Ansatz der koordinierten Nettoübertragungskapazität oder ein lastflussgestützter Ansatz verwendet.
  • 37.9. Die Übertragungsnetzbetreiber schlagen daher erstmalig vor, die Jahreshöchstlast mit Hilfe des Bottom-Up-Simulationsmodells eLOAD zu ermitteln (FORECAST / Fraunhofer ISI / S. 108).

 

  • 37.10. Partielle Dekomposition: Bei der „partiellen Dekomposition“ wird die historische Lastkurve in ihre Bestandteile, also in die Lastverläufe der einzelnen Anwendungen zerlegt….
  • 37.11. Zur Durchführung der partiellen Dekomposition steht den Übertragungsnetzbetreibern eine umfangreiche Datenbank mit über 600 Lastprofilen aus Feldstudien, Gebäudesimulationen und internen Daten aus Industrieprojekten zur Verfügung. (ISI S. 108)

 

 

  • 38. ‘Genauigkeitsprognose auf mittlere Sicht’ (MAF),… Die vom AMF genutzte Methodologie besteht in der ersten pan-europäischen Bewertung der Systemadäquanz, die marktbasierte Techniken zur Modellierung der Probabilität nutzt VS. NN
  • 39. Um die gesamte Komplexität zur Passgenauigkeit In Stromsystemen abzubilden, müssen durch die ÜNB weitere Daten bereit gestellt werden VS. NN (§12f)
  • 40. 1. Advisory Council Meeting 2015.pdf, (S. 4)
  • Die fünf wesentlichen Themen bestehen aus: Erfüllung auf gesetzlicher Grundlage; verstärktes Engagement der Interessenvertreter und größere Transparenz; proaktive Beitragseingabe zur Politik und Gesetzesinitiativen; Kooperation der Händler und ÜB
    ÜNB-VNB; und regionale Zusammenarbeit.

 

  • Gewährleistung von Diskussionszentren rund um die ÜNB-VNB Kooperation (die keinesfalls andere Akteure ausschließen oder Lösungen ohne ausreichende Einbeziehung der Interessenvertreter verbindlich vorgeben darf)
  • Das Advisory Council hat die Frage aufgeworfen, ob ÜNBs erlaubt sein sollte, technische Anlagen (wie Speicher) zu besitzen und zu betreiben. Die Ausgangsannahme besteht darin, dass Assets, die im Strommarkt genutzt werden, auch von Marktteilnehmern besessen und betrieben werden müssen … faktische Verwendbarkeit … unterstreicht, das Regularien ÜNB nicht daran hindern dürfen, solche Assets zu besitzen und zu betreiben

 

3rd Advisory Council Storage Assets Role of TSOs.pdf, S. 1; How are these scenarios developed?
  • 41.Generell beruhen Szenarien auf einer Erzählungslinie, Annahmen, Datensammlungen, Qualitätschecks, pan-europäischen Methodologien, und finalen Marktsimulationen um den Energieaufwand zu quantifizieren.
  • 42. Der Abgleich zwischen installierter Erzeugung and Nachfrage kann wertvoll sein.
  • 43. Einerseits erlauben reine Energiemodelle (wie das PRIMES Modell in den Trendbeschreibungen der EU-Kommission) eine Prognose, die auf einer Optimierung aller Energiekomponenten beruht, also nicht nur allein Elektrizität, sondern auch Gas und Öl, da ja alle miteinander verknüpft sind und interagieren.
  • 44. Andererseits beruhen strombasierte Modelle (wie die von ENTSO-E in diesem Bericht genutzten) auf Strommarktsimulationen, die sich zur Berechnung auf ganzjährige Lastprofile im Stundenbereich und Klimadaten ebenso stützen, wie auf technische Netzbeschränkungen.
  • 45. Strombasierte Modelle erlauben zonenbezogene Preisdifferenzen, RES Vergeudung, staatliche Bilanzen, etc. zu bewerten … und sie bilden den Schlüssel zu Methodologien, die die Brücke von Bottom-Up Szenarien to top-down Szenarien schlagen.
  • 46. Unter-Verteilstationen werden Batteriesysteme enthalten. Diese Batterien werden mittels Kontrollausrüstung in den Stationen genutzt, um die Stromversorgung zu sichern. Solche Batterien werden als Teil der Unterverteilstationen angenommen, die wiederum ein zentrales Element des Netzes darstellen. Aus diesem Grund fallen solche Batterien unter Kategorie 2, Netz Assets.
  • 47. Mitglieder des AC heißen verbraucherzentrierten Ansatz des ENTSO-E-Berichts 2017 willkommen.

 

  • 4.0 Werkzeuge / Tools

 

  • 1. Richtlinie (EU) Nr. 347/2013 bestimmt, dass die PCIs aus der TYNDP Liste für Verschiebungs- und Speicherprojekte ausgewählt werde. ( EU RL 347/2013 S. 40) VS Flexibilitätsoptionen und Speicher: Szenariorahmen 2017-2030 enthält erstmalig zusätzliche verschiedene Flexibilitätsoptionen. Hierzu zählen im Wesentlichen dezentrale und zentrale Speicher, das Lastmanagement klassischer und neuer Stromanwendungen sowie die (zeitliche) Entkopplung der Strom-und Wärmeerzeugung aus KWK-Anlagen (SRE S. 88).

 

 

  • 1.1 Referenzwerte für das Jahr 2015
  • Zur Ermittlung des Referenzwertes der Jahreshöchstlast des Jahres 2015 kann auf Daten der Übertragungsnetzbetreiber zurückgegriffen werden, die die Jahreshöchstlast in dem Bericht der deutschen Übertragungsnetzbetreiber zur Leistungsbilanz 2015 nach § 12 Abs. 4 und Abs. 5 EnWG mit Stand vom 30.09.2015 (nachfolgend: Leistungsbilanzbericht 2015) dargestellt haben. Der Leistungsbilanzbericht 2015 beinhaltet sowohl eine Statistik der von den Übertragungsnetzbetreibern ausgewerteten Daten des Jahres 2014 als auch eine Prognose für das Jahr 2015. Da die abschließende Statistik der Übertragungsnetzbetreiber für das Jahr 2015 erst im kommenden Leistungsbilanzbericht 2016 zu erwarten ist, bezieht sich die Bundesnetzagentur zur Ermittlung des Referenzwertes 2015 auf den Prognosewert der Übertragungsnetzbetreiber aus dem aktuellen Leistungsbilanzbericht 2015. (Willkommen in der Filterblase für klandestinen Nepotismus, Vetternwirtschaft und Haltungsinzest)
  • Im Leistungsbilanzbericht 2015 erläutern die Übertragungsnetzbetreiber, warum eine genaue Messung der Netzebenen übergreifenden Jahreshöchstlast technisch nicht möglich ist: Bei einer Vielzahl von Verbrauchern erfolgt keine Leistungsmessung der Stromentnahme, die für eine Bestimmung der Jahreshöchstlast erforderlich wäre. Viele Verbraucher aber auch Erzeuger wie z.B. Photovoltaikanlagen verfügen nur über eine Messmöglichkeit der dem Netz entnommenen bzw. der in das Netz eingespeisten elektrischen Arbeit. (Welche Voreingenommenheit!) Weiterhin stünden auch Daten zur Einspeisungen innerhalb von Industrienetzen, geschlossenen Verteilnetzen und dem Netz der Deutschen Bahn nicht zur Verfügung, womit ein nicht zu vernachlässigender Teil der Verbraucher nicht erfasst werde. (Na und? Selbst wenn sie getrennt sind spielt das keine Rolle, da an den Übergabepunkten gemessen werden kann – und wird). Die Jahreshöchstlast könne daher nicht über die Verbrauchsseite ermittelt werden. Da jedoch im Stromnetz der Verbrauch und die Erzeugung zu jeder Zeit gleich groß sein muss, werde die Jahreshöchstlast im Leistungsbilanzbericht 2015 indirekt über die Einspeisung auf der Erzeugerseite hergeleitet.

Einspruch: Offenkundig eine auf den ersten Blick plausible Methode, die aber – vor allem in Netzen die durch gigantische zentrale Erzeugungseinheiten gespeist werden – völlig übersieht, welches Potential zur Spitzenkappung und zeitlichen Lastverlagerung in den unteren Spannungsniveaus liegt. Kalkulieren wir mal  40 Millionen Haushalte in Germanien mit einer durchschnittlichen Leistungsabnahme von 1,2 KW und einzelnen Spitzen von 4 KW am späten Nachmittag zwischen 17:00 und 19:00 Uhr (oder auch 2 KW morgens zwischen 7:00 und 9:00 Uhr). Das bedeutet eine Spitzennachfrage von 160.000.000 KWh in je einer Stunde. Wofür 160 GW Spitze im gesamten Netz nötig sind. Nur für die privaten Haushalte. „Auf Wiedersehen und gute Reise“ für jegliche Plausibilität, wenn deutsche ÜNB eine notwendige Jahreshöchstlast von 84 GW identifizieren, Für das gesamte Netz! Nehmen wir nun an diese Haushalte installieren alle eine 5 KWh Li-Ion Speicherbatterie, die eine Spitzenleistung von 10 kW liefert, um diese morgendlichen und abendlichen Spitzen auszugleichen, während der Akku gemächlich per Brennstoffzelle oder privater PV aufgeladen wird oder gar vom eigenen Elektroauto aus, sobald man damit von der Arbeit zurück ist, wo es durch z. B. eine öffentliche PV auf dem Firmenparkplatz aufgeladen wurde und der bi-direktional arbeitsfähige Wagen ist über Nacht mit dem Haus verbunden. Dort liegt der Schlüssel zu mehr Flexibilität. Nicht in immer dickeren Kabeln oder einer kompletten Verspinnwebung der Landschaft. 

  • Den Übertragungsnetzbetreibern seien sowohl die Einspeisungen in Industrienetze, innerhalb geschlossener Verteilnetze sowie jene in das Netz der Deutschen Bahn bekannt. (das nebenbei bemerkt endlich wieder als Gemeinschaftseigentum aller Bürger klassifiziert werden muss, an statt als Asset einer privaten Kapitalgesellschaft). Dazu erfassten die Übertragungsnetzbetreiber den Leistungsfluss an den Übergabestellen zwischen Übertragungs-und Verteilernetz sowie an die an das Übertragungsnetz angeschlossenen Endverbraucher. Im Gegensatz zu den Vorjahren lägen den Übertragungsnetzbetreibern auch qualitativ hochwertige Daten zur Einspeisung von erneuerbaren und konventionellen Erzeugern in das Verteilernetz vor, die ihnen im Rahmen des Prozesses „Marktregeln für die Durchführung der Bilanzkreisabrechnung Strom“ (MaBiS) zur Verfügung gestellt worden seien. Auf diese Weise könnten Energieausgleichprozesse auf Verteilernetzebene, die bisher aus Perspektive des Übertragungsnetzbetreibers nicht ersichtlich waren, berücksichtigt und die Einspeisung entsprechend bilanziert werden. Die Übertragungsnetzbetreiber gehen davon aus, dass 97% der gesamten Einspeisung (in das Verteiler-und das Übertragungsnetz) im Rahmen ihrer Erhebungen zum Leistungsbilanzbericht 2015 abgedeckt würden.

 

Auf Grund der im Vergleich zu den Vorjahren verbesserten Erfassung der Einspeisung von 97% erachtet die Bundesnetzagentur es erstmals für angemessen eine Hochrechnung auf die Grundgesamtheit vorzunehmen. Die Übertragungsnetzbetreiber weisen für die statistisch erhobene Jahreshöchstlast des Jahres 2014 einen Wert von 81,8 GW aus, welcher im Leistungsbilanzbericht 2015 auch als Prognose für das Jahr 2015 angenommen wird. Wird dieser um die fehlende Einspeiseabdeckung von 3% nach oben korrigiert, ergibt sich für die Jahreshöchstlast 84,4 GW.

 

 

  • 2. Stromnetzwerke, die beide, ÜNBB und VNB umfassen, belegen eine Schlüsselposition ((AWP. S. 4) VS. NN (Bestehende Strukturen auf Staatsebene werden im SER nicht erwähnt, keine Transparenz)
  • 3. Common Grid Model – Grundsätzliches Netzmodell (AWP. S. 2, 4, 5, 7, 9, 12, 22, 23, 24, 27) VS. NN
  • 4. Inkraftsetzung von Netzwerkverordnungen, (AWP S. 4, 5, 12 ff / neue Regeln) VS. NN
  • 5. Überarbeitung der Gebotszonen (AWP S. 7, 8, VS. NN
  • 6. Inkraftsetzung dieser „Codes“ bedeutet, sie sind gültiges Recht der EU (AWP S 4, 5, 12), VS. NN bzw. Bezugnahme auf Bundesgesetze: Bei der Ermittlung der Szenarien ist grundsätzlich von den aktuellen rechtlichen und regulatorischen Rahmenbedingungen auszugehen, da die Entwicklung der gesetzlichen Grundlagen bis 2030 bzw. 2035 ebenso wenig vorhersehbar ist wie die Entwicklung der Marktpreise oder die Verbreitung neuer Technologien (SRE S. 73)
  • 7. Komitee der Interessenvertreter des Marktes 2015 (AWP S. 8) VS NN
  • 8. Komitee der Interessenvertreter der Netzeigentümer (AWP S. 9) 2016 VS NN
  • 9. Komitee der Interessenvertreter der Netzbetreiber 2017 (AWP S. 9) VS NN
  • 10. Gruppe der Bilanzkreisvertreter (AWP S. 9) VS NN
  • 11. Workshops beziehen Interessenvertreter ein … Planung öffentlicher Workshops und Konsultationen 2018 (AWP s. 9) VS NN bzw. „öffentliche Konsultation“
  • 12. Ein umfassendes Verzeichnis der Verknüpfungs- und Umsetzungsrichtlinien, das alle verfügbaren europäischen und staatlichen Dokumente und Zeitverläufe in allen europäischen Ländern und Regionen zusammenfasst in all European countries und so zugänglich macht (AWP S. 9) VS. NN
  • 13. 2017 Aktualisierte Vorschläge zu den Vorschlägen zu den Methodologien zur Kalkulation geplanter Transaktionen (AWP S. 10) VS NN (weiter so oder Alibierweiterungen pro Forma)
  • 14. FCA … Etablierung und Bewerbung prognostizierender Märkte (AWP S. 11) VS NN (statisches Marktverständnis mit einzelnen Aufschlägen für Emobility und Wärmepumpen. Überhaupt nicht auf dem Schirm: P2G)
  • 15. ENTSO-E hat ein initiierendes Set von 18 unverbindlichen IGDs erstellt (Leitliniendokumente zur Einführung), die die Effekte spezifischer Technologien herausheben (AWP S. 14) VS NN (nur Pauschalannahmen ohne Grundlage, keine konkreten Ansätze)
  • 16. Aufforderung an die Interessenvertreter ‘erstellen Sie Ihre eigenen 2030er und 2040er Szenarien’ VS NN (Beauftragung der BNetzA durch Regierung/Parlament. Hier bleibt dem Bürger als Endverbraucher nur der Versuch der normativen Kraft des Faktischen).
  • 17. pan-europäische Berichte zu Systemnotwendigkeiten (AWP S. 17) VS NN
  • 18. Notwendigkeit innovativer Lösungen (AWP S. 20) VS NN (keine Experimente)
  • 19. Automatisierung der Unterverteilstationen (AWP S. 20) VS NN (nur RONT – nicht automatisch – als einziges Mittel)
  • 20. standardisierte Analyse lokaler Zustände, (AWP S. 20) VS NN (keine ständige Messung möglich – was nichts als Täuschung der Öffentlichkeit ist, Es geht unter dem Vorwand „Datenschutz“ nach 12f EnWG, indem alle Daten a priori erst mal als Geschäftsgeheimnisse deklariert werden, nur um die Bewahrung profitträchtiger Privatbereiche mittels Herrschaftswissen In Wahrheit wird alles gemessen)
  • 21. dynamic line rating (AWP S. 20) VS. NN http://lindsey-usa.com/dynamic-line-rating/

 

  • 22. Elektrizitätsnetze müssen Synergien mit anderen Energienetzwerken erzeugen (AWP S. 20) VS “Sektorenkopplung”, wobei der ENTSO-E-Ansatz deutlich über bloße Sektorenkopplung hinausgeht (Telekommunikation, Gas, Wärme Wasser, P2G, Datenmanagement)
  • 23. Wandel hin zu nachhaltigem Transport (AWP S. 20) VS NN
  • 24. ENTSO-E wird … einen Bericht für extreme Szenarien für das Energiesystem von 2030 entwickeln (AWP S. 21) VS „Bei der Ermittlung der Szenarien ist grundsätzlich von den aktuellen rechtlichen und regulatorischen Rahmenbedingungen auszugehen, da die Entwicklung der gesetzlichen Grundlagen bis 2030 bzw. 2035 ebenso wenig vorhersehbar ist wie die Entwicklung der Marktpreise oder die Verbreitung neuer Technologien“ (SRE S. 73)
  • 25. … wird zudem eine Bewertung verschiedener Flexibilitätslösungen zur Bewältigung der Notwendigkeiten im Stromnetz entwickeln (AWP S. 21) VS „dass die Übertragungsnetzbetreiber in der Netzentwicklungsplanung 2025 eine Spitzenkappung in allen Szenarien verbindlich zu berücksichtigen hatten. Dies geschah vor dem Hintergrund der zum Zeitpunkt der Genehmigung klar und eindeutig erkennbaren Absicht der Bundesregierung (Koalitionsvertrag, Grünbuch des Bundesministeriums für Wirtschaft und Energie), die Spitzenkappung zukünftig gesetzlich zu verankern“, (S. 76) v „Die Betreiber von Übertragungsnetzen müssen im Rahmen der Erstellung des Netzentwicklungsplans die Regelungen zur Spitzenkappung nach § 11 Absatz 2 bei der Netzplanung anwenden.“ (SRE S.77).
  • 26. Verbraucher als aktive Marktteilnehmer (auch BEUC): Die ÜNB-VNB Plattform (AWP S. 21) VS NN (Stakeholder = ÜNB, VNB, Verbände, aber kein Verbraucherverband)
  • 27. ÜNB und VNB kooperieren aufs Engste … entwickeln ein allgemeines Verständnis der Herausforderungen und Notwendigkeiten aus Sicht eines Systembetreibers und neutralen Marktunterstützers (AWP S. 21) VS NN
  • 28. ENTSO-E hat ebenso das Mandat kurzfristige, saisonale Berichte zur Vorschau zwei Mal pro Jahr zu veröffentlichen, die den nächsten Sommer und Winter umfassen, jeweils zum 1. Juni und 1. Dezember (AWP S: 23) VS NN
  • 29. Wechsel von der augenblicklich weitgehend vorherbestimmenden Herangehensweise zu eine auf Wahrscheinlichkeiten beruhenden auf Stundenanalyse (AWP S. 23) VS. Ermittlung der Szenarien ist grundsätzlich von den aktuellen rechtlichen und regulatorischen Rahmenbedingungen auszugehen, (SRE S. 73), wobei dazu mittlerweile ein Widerspruch besteht: Die Übertragungsnetzbetreiber schlagen daher erstmalig vor, die Jahreshöchstlast mit Hilfe des Bottom-Up-Simulationsmodells eLOAD zu ermitteln (ISI S. 108)
  • 30. Adäquanzprüfung eine Woche vorab … eine der Aufgaben der RSCs (AWP S. 21) vs. NN
  • 31. Unterstützt durch blockchain-technology (AWP S. 24) VS NN https://de.wikipedia.org/wiki/Blockchain
  • 32. ÜNB planen den Netzbetrieb von ein Jahr im Voraus bis zu einer Stunde vor Echtzeit; dies ist das letzte Zeitfenster, in dem Marktakteure ihre Platzierungen im Tagesgeschäft nachjustieren können. Entscheidungen, die für die Sicherstellung der tatsächlichen Bereitstellung notwendig sind werden durch ÜNB Stunden zuvor getroffen, wobei die bestmögliche Vorhersage für die jeweilige Situation nach den letzten Intraday Transaktion eingerechnet wird. Für die akute operative Planung nutzen ÜNB computergestützte Modelle des Stromsystems um dessen Verhalten in Abhängigkeit von den verschiedenen Flüssen und Elementen der Infrastruktur zu simulieren. Zusätzlich dienen Netzmodelle als Instrumente für die Sicherheitsanalyse, die Kapazitätskalkulation, und die Adäquanzbewertung VS NN kein derartiger Bezug im SRE erkennbar oder reichlich unklar
  • 33. Das CGM wird durch drei der Netzwerkverordnungen legitimiert: Die Systembetriebsrichtline, die CACM Regulierung und die FCA Regulierung VS NN (Ableitung aus EnWG und Auftrag der Regierung / Parlament)
  • 34. Zwei Methodologien: Die CGM Methodologie, und die Vorsorgemethodologie für Erzeugung und Leistung (AWP S. 25) VS NN (keine Öffnung der Methodologie, keine Alternativen)
  • 35. ATOM: Das Netzwerk alle ÜNB für den Datenaustausch betreffend alle außerhalb der Echtzeit erfassten Daten der Betriebsführung und der Marktereignisse (ATOM / AWP S. 25) VS NN (keine formelle Entsprechung = keine Transparenz)
  • 36. Die zentrale Verknüpfung der ÜNB umfasst vier ÜNB: RTE (France), Swissgrid (Switzerland), Amprion (Germanien) und APG (Austria). Weitere ÜNB werden dann an einen dieser vier ÜNB geknüpft, bis zu einem Maximum von zwei Verknüpfungen entfernt vom zentralen ÜNB VS. NN
  • 37. Durch einen freien Zugang für alle zu allen Informationen, ermöglicht dies eine nivellierende Ebene auf der die Marktteilnehmer bessere Analysen und Entscheidungen treffen können. (AWP S. 26) VS NN
  • 38. Wir werden die Transparenzplattform von ihrem gegenwärtigen Umfang zu einem marktdienlichen Werkzeug ausbauen (AWP S. 26) VS NN
  • 39. Aktivitäten zur Standardisierung (AWP S. 26) VS NN
  • 40. ENTSO-E’S ADVISORY COUNCIL (AWP S. 27) VS. NN
  • 41. PUBLIC CONSULTATIONS (AWP S. 27) VS “öffentliche Konsultationen”, (besser gesagt: “öffentliche Belehrungen”)
  • 42. 3rd_Advisory Council Protokollentwurf.pdf (3rd ACP S. 4): Mitglieder weisen darauf hin, dass ein dezentralisiertes System und die enge Anbindung der Endverbraucher der Schlüssel zu Erkenntnis und Verständnis sind, wenn über zukünftige Steuerung und Entwicklung der Netzwerkverordnung gesprochen wird VS NN
  • 43.1 Dezentralisiertes System und Verknüpfung mit dem Endverbraucher (S. 4, 3rd ACP) VS Die Bundesnetzagentur hat bereits in der letztmaligen Genehmigung des Szenariorahmens die in mehreren Studien angeblich propagierte Aussage des Vorzugs der ausschließlichen dezentralen Energieerzeugung widerlegt (siehe SRE 2025, Entscheidung vom 19.12.2014, S. 74). Die Studie „Wirkungen beschränkten Ausbaus des Übertragungsnetzes in Germanien in der Perspektive für 2030“ von ECOFYS untersuchte lediglich eine Regionalisierung des Ausbaus von EE-Anlagen vor dem Hintergrund eines verzögerten Netzausbaus bzw. keines Netzausbaus. .). (Die Beauftragten hätten den Artikel “Leaked DOE study draft_U.S.” lessen sollen: https://pv-magazine-usa.com/2017/07/17/leaked-doe-study-draft-u-s-grids-are-getting-more-reliable-not-less/) Zentraler Untersuchungsgegenstand der Studie „Kostenoptimaler Ausbau der Erneuerbaren Energien in Deutschland“ von den Gutachtern von consentec sowie Fraunhofer IWES war die Frage, an welchen Standorten in Zukunft Erneuerbare Energien ausgebaut werden sollten, um die Gesamtkosten der Stromversorgung zu minimieren.

 

  • Erstaunlich, dass diese Frage nie gestellt wird, wenn es um die Weihnachtswunschlisten großer Energiekonzerne geht. Niemand argumentiert über die Total Life Cycle Costs neuer Leitungen inklusive der Nutzungsgebühren von Grundbesitzern.

 

  • Demnach hätte eine verbrauchsnahe Erzeugung einen nennenswerten Effekt auf den Netzausbaubedarf nur dann, wenn auch konventionelle Kraftwerke verbrauchsnah verortet wären oder auf Netzstabilität sichernde Maßnahmen verzichtet würde.

 

  • Es ist überaus befremdlich, wie das eine Fraunhofer Institut zu genau den Schlussfolgerungen gelangt, die ein anderes verwirft. Noch befremdlicher werden diese kühnen Thesen, wenn man in Betracht zieht, dass die überall installierten Reservekapazitäten nahezu vollständig auf kleinen, dezentralen Einheiten mit ein paar MW Leistung aufgebaut sind.

 

  • Ferner erfordere eine verbrauchsnahe Erzeugung eine gezielte politische Steuerung der Standortentscheidung von Kraftwerkbetreibern, die dem gegenwärtig auf Marktsignalen basierten Ansatz diametral entgegensteht. (SRE S. 97)

 

  • Das Argument ist nicht schlüssig. Jede einzelne Standortfestlegung – für jedes zentrale Großkraftwerk – in Germanien wurde durch die Politik getroffen – vielleicht, aber nicht notwendigerweise auf Drängen der Betreiber, die sich dafür im Grunde überhaupt nicht interessieren, als ausreichend Subventionen von der Melkkuh kommen. Beim transparenten Blick – nicht nur auf die jüngsten Kraftwerke -, wurde nicht ein einziges ohne massive Subventionen, meistens zwar indirekt, dennoch zweifellos höchst effektiv für die betriebswirtschaftliche Rentabilität. Siehe F&E-Mittel für Das G&D Turbinenkraftwerk in Irsching.
  • Maßstäbe / Benchmarks

 

  • 1. In einem gut integrierten Elektrizitätsbinnenmarkt, ist das Netz ökonomisch solide so dimensioniert, dass die Belastung jedes Netzelements unter 50% der technischen Nennkapazität liegt (TYNDP 2016 exec. S. 19) VS NN
  • 2. Eine Schlüsselanforderung besteht darin die möglichst komplette Information über Übertragungsprojekte verfügbar zu machen (TYNDP 2016 exec. S. 29) VS NN (BNetzA Newsletter)
  • 3. Was wir heute annehmen setzt den Rahmen in dem die Zukunft analysiert wird. (TYNDP 2016 exec. S. 36) VS NN (diese zur Achtsamkeit mahnende Sicht wird im SRE nicht angesprochen)
  • 4. Steigerung gesellschaftlicher Wohlfahrt (TYNDP 2016 exec. S. 41) vs. NN
  • 5. Projektträger, Regulierer und Politikschaffende müssen hinreichend viel von Technologien und deren Verfügbarkeit verstehen (TYNDP 2016 exec. S. 43) VS NN (kaum bis gar kein fachliches Know-how gefordert, bei der BnetzA z. B: sind die Bestimmer durch die Bank Juristen eine Naturwissenschaftler oder Techniker)
  • 6. Relation zwischen Kapazität und gesellschaftlicher Wohlfahrt (TYNDP 2016 exec. S. 49 ff) VS NN (komplettes Nichts)
  • 7. Der Endverbraucher gehört in den Mittelpunkt (AWP S. 4) VS NN
  • 8. Die Erzeugung wächst zunehmend dezentral und variabel (AWP S. 4) VS …weniger die Dezentralität als vielmehr die lastnahe, dezentrale Erzeugung. Diese steht aber zum einen in einem natürlichen und damit auch ökonomischen Konflikt zur Ertragskraft der Standorte. Zum anderen ist es mehr als zweifelhaft, ob eine Beschränkung auf verbrauchsnahe oder auch nur stärkere Anreizung verbrauchsnäherer erneuerbarer Erzeugung mit den Zielen einer sicheren, zuverlässigen und preiswerten Versorgung vereinbar wäre …bislang fehlender Speichertechnologien, die geeignet sind (SRE S. 97).

 

  • In der Tat gibt es bei niemandem an den Hebeln irgendein Schamgefühl dabei, alle eindeutigen Notwendigkeiten des Energiewandels – egal ob sich diese auf Klimakatastrophenszenarien oder klare, nachvollziehbare volkswirtschaftliche Nachhaltigkeitsberechnungen für künftige Generationen stützen – in ein stockkonservatives und auf Erhalt des Status Quo zielendes Schema umzustricken. Und das nur, um Parteispenden und politische Unterstützung aus den Wirtschafteliten zu erhalten.
  • 9. Wobei strikte Neutralität beachtet und Enthaltung aus dem Markt geübt wird (AWP S: 4) VS die klare Bevorzugung einzelner, genau bestimmbarer Marktteilnehmer oder teilnehmender Gruppen durch die klandestine Rückkopplung zwischen Regierung / Verbänden / BNetzA / ÜBN und Stromerzeugern. Schweigen erzeugt Gold!

 

 

  • Methodologie / Methodology

 

  • 1. FORECAST / ELOAD: Fraunhofer ISI VS NN

 

 

  • Annahmen / Assumptions

 

  • 1. vs. Dezentralität = „verbrauchsnahe Erzeugung (VDE)-Ansatz. BNetzA: … einem natürlichen und damit auch ökonomischen Konflikt zur Ertragskraft der Standorte … anderen ist es mehr als zweifelhaft, ob eine Beschränkung auf verbrauchsnahe oder auch nur stärkere Anreizung verbrauchsnäherer erneuerbarer Erzeugung mit den Zielen einer sicheren, zuverlässigen und preiswerten Versorgung vereinbar wäre. (SRE S. 96)
  • 2. ENTSO-E sagt umfangreichere, volatilere Stromflüsse über weitere Distanzen quer durch Europa vorher, vorwiegend Nord-Süd (AWP S. 12) VS. NN
  • 3. Der Großteil des Investitionsbedarfs in Übertragung hängt mit der Entwicklung der RES-Integration zusammen (AWP S. 12) VS …bislang fehlender Speichertechnologien, die geeignet sind (SRE S. 97) …

 

  • Vorteile / Benefits

 

  • 1. signifikante, positive Wirkung auf Europas gesellschaftliche Wohlfahrt (TYNDP 2016 exec.S. 12) VS NN
  • 2. Europa kann von zusätzlichen, günstigen, Erzeugungsüberschüssen profitieren (TYNDP 2016 exec. S. 16) VS NN

 

 

  • 3. Beim Blick auf die internen Grenzen in der BRD, zeigt die Analyse des TYNDP 2016, das Verstärkungsmaßnehmens an diesen gewaltige europäische Vorteile erbringen (TYNDP 2016 exec. S. 16) VS NN: Zur näheren Erläuterung an dieser Stelle: Vgl. Abbildung S. 63 in Kapitel 1.12.6 und 1.12.8 TYNDP 2016, sowie Text:

 

 

 

The planned or already realized powerlines (purple and red colored) crossing Germany North-South in BnetzA Scenario Reports are expressively justified as necessary for Bavarian supply, assuming and pretending an energy poverty in Bavaria after shut down of nuclear power plants. They are not mentioned for European trade or supply. The point is, that BnetzA cannot prove necessity in a correct way for internal German supply. They just pretend it. Sorry, but we urgently need people, who know what they are doing. See following lines.

Die geplanten oder bereits gebauten Stromtrassen (violett und rot) in Nord-Süd-Richtung quer durch Germanien in den Szenario-Rahmen-Entwürfen der BnetzA werden ausdrücklich mit der Versorgung Bayerns begründet, wobei eine bevorstehende Energiearmut in Bayern nach der Abschaltung der letzten Atomkraftwerke unterstellt und vorgeschoben wird. Ihre Notwendigkeit wird nie mit dem Export nach Norditalien begründet. Der jedoch wird von der europäischen Ebene klar dargestellt. Das pikante daran ist, dass die BnetzA den behaupteten bedarf in keiner Simulation korrekt nachweisen kann. Dieser wird lediglich behauptet. Verlangt man die verwendeten Prognosedaten zur rechnerischen Überprüfung, bekommt man diese auf Grund der geltenden Rechtslage nicht (§12 f EnWG).

Es tut mir sehr leid. Aber wir brauchen an der Stell dringend Leute, die wissen, was sie tun. Siehe die folgenden Zeilen, entnommen aus dem TYNDP 2016::

 

 

  • „Die hauptsächlichen Treiber hinter der Entwicklung für die Übertragungskapazität an der norditalienischen Grenze betreffen die Ausbeutung neuartiger Erzeugung, hauptsächlich derer in Norddeutschland und Frankreich (Wind) und in Süditalien (Wind und PV). Die Interkonnektivitätsprojekte, die an diesen Grenzen geplant sind, werden weiteren Stromaustausch ermöglichen und dergestalt die Integration von RES und zusätzliche Pumpspeicherkapazität in den Alpen ermöglichen. Erstellt man die Bilanz zwischen Zugewinn an gesellschaftlicher Wohlfahrt und Kosten von Infrastrukturinvestitionen für wachsende Volumina an Interkonnektivität, dann liegt das optimal Niveau an Interkonnektivität bei 13,5 GW. Eben das, was das TYNDP Portfolio durch mittel- und langfristige Projekte bereitzustellen beabsichtigt.“

 

  • 4. eine positive Wirkung auf die Umwelt (TYNDP 2016 exec. S. 27) VS UN-Klimakonferenz in Paris 2015 (COP 21) im Übereinkommen von Paris“ ausgehandelte Begrenzung des Temperaturanstiegs findet in diesem Szenariorahmen noch keine Berücksichtigung. (SRE S. 75)

 

 

  • Nachteile / Disadvantages

 

  • 1. Finanzielle Mittel von 1.5-2 €/MWh auf den Stromverbrauch TYNDP 2016 exec. (S. 12) VS. NN

 

  • Motive / Motives // Aufgaben / Tasks

 

  • 1 wären sie implementiert worden, … hätten die Netzwerkverordnungen seit 2006 dazu beigetragen 15 Million Emissionen und M€ 300 – 500 ökonomische Verluste zu unterbinden … (TYNDP 2016 exec. S. 8) VS NN
  • 2. Die im TYNDP geschilderten Infrastrukturprojekte nehmen eine Schlüsselstellung dabei ein, die Klima- und Energiepolitischen Zielsetzungen der EU bei der Dekarbonisierung, der Wettbewerbsfähigkeit und Versorgungssicherheit zu erreichen (TYNDP 2016 exec. S. 17) VS NN
  • 3. Eine von den Verbrauchern angetriebene Energierevolution (3rd ACP S. 4) VS NN (Betrachtung als Hoheitsaufgabe)
  • 4. Beispielgebende Lösungen wie physikalische und Marktflüsse in Übereinstimmung geplant, wie „Verstopfungen“ in Simulationen und in Echtzeit gelöst werden können (3rd ACP, S. 4) VS NN (ENTSO-E spricht nirgends von Netzüberlastungen)

 

  • Definitionen / Definitions // Rollen / Roles
  • 1 Interessenvertreter = Marktteilnehmer, VNB, ÜNB und Regulierer (TYNDP 2016 exec. S. 6) VS BnetzA & ÜNB (Nicht ACER)
  • 2. ENTSO-E koordiniert die Innovationsaktivitäten der ÜNB um sicher zu stellen, dass das zukünftige Netz den Herausforderungen gerecht wird (TYNDP 2016 exec. S. 20) VS NN (BNetzA ist Vermittler, besser gesagt, aus dem politischen Gestaltungsprozess outgesourcte, eigenständige Behörde)

 

  • Quellen / Sources

 

  • 1. Approval of SRE 2016 = SRE 2017 – 2030 (Genehmigung)
  • 2. TYNDP 2016 Scenario Development Report
  • 3. TYNDP draft 2018
  • 4. First Advisory Council minutes (protocol)
  • 5. Third Advisory Council minutes (protocol)
  • 6. EC-Regulations/guidelines 2015/1222; 2016/1388; 2016/1477; 2016/1719; 2017/1485;
  • Fraunhofer ISI (NETZENTWICKLUNGSPLAN STROM 2016)

 

  • Anmerkungen / Remarks

 

  • Eine Frage, die bisher nicht gestellt wurde, wirft der TYNDP auf: AC members note that basic principles that should govern the distribution of roles to find the best solution from a society point of view: storage is not counted as a grid asset and should be freely provided by any market party; TSOs should not participate in this market; they should aim to minimize system costs and to use optimally services without interfering with the market. Auf der staatlichen Ebene in der BRD wird diese Frage naturgemäß gar nicht erst gestellt, da Speicher nach wie vor stiefmütterlich behandelt werden.

 

Die Liberalisierung hat eine strikte operative Trennung von Erzeugung, Transport, Handel und Messung von Strom mit sich gebracht. Wie sollen nun technische Anlagen eingestuft werden: Nach ihrer Funktion oder nach ihrer Existenz innerhalb der Wirtschaftsbilanz eines bestimmten Marktdienstleisters? Ist ein Speicher ein Asset des Netzes oder der Erzeugung? Die Frage ist, so banal sie erscheint, enorm kritisch, da es für den Netzbetrieb auf gesetzlicher Grundlage garantierte Investitionsrenditen gibt, für die Erzeugung jedoch nicht.

 

Zurück zu den Eingangsfragen

 

  • Energiewende, Netzausbau, wer blickt da eigentlich noch durch?
  • Braucht‘s das?
  • Welchen Nutzen – und damit Sinn – ergibt das?
  • Woher kommt der Bedarf?
  • Wohin kann die Reise gehen?
  • Wohin soll Sie gehen?

 

 

List of abbreviations and Links

 

Abkürzungen und Links

 

ACER – Agency for the Cooperation of Energy Regulators

 

CBA – Cost Benefit Analysis

 

DSR – Demand Side Response

 

EC – European Commission

 

ENTSO-E  European Network of Transmission System Operators

 

GTC – Grid Transfer Capacity

 

PCI – Project of Common Interest

 

RES – Renewable Energy Sources

 

SEW – Socio-Economic Welfare

 

SoS – Security of Supply

 

TSO – Transmission System Operator

 

DSO – Distribution System Operator

 

TYNDP – Ten Years Network Development Plan

 

PTDF – Power Transfer Distribution Factors

 

V1 V2 V3 V4 – Visions 1, 2, 3 and 4 (the name of the 4 scenarios used to build the TYNDP 2016)

Liste Netzwerkcodes

DC – Demand Connection Code (NC DCC)

https://www.vde.com/de/fnn/themen/europaeische-network-codes/dcc

HVDC – High Voltage Direct Current Connections (NC HVDC )

https://www.vde.com/de/fnn/themen/europaeische-network-codes/hvdc

RfG – Requirements for Generators (NC RfG)

https://www.vde.com/de/fnn/themen/europaeische-network-codes/rfg

CACM Capacity Calculation Methods

FCA – FORWARD CAPACITY ALLOCATION

 

EB – Electricity Balancing Guideline

 

CCR – Capacity Calculation Region

 

SOGL – System Operation Guideline (SO Guideline)

 

ER – Network Code on Emergency and Restoration (NC ER)

 

CGM – Common Grid Model (Startnetz)

RSC – Regional Security Coordinators

IDG – Implementation Guidance Documents

 

NRA – National Regulation agencies

 

BEUC – Bureau Européen des Unions de Consommateur – Europäischer Verbraucherverband

 

FORECAST / eLOAD – http://www.forecast-model.eu/forecast-en/index.php

 

http://www.forecast-model.eu/forecast-en/aktuelles/meldungen/news-2017-02.php

 

 

https://www.entsoe.eu/map/Pages/default.aspx

 

https://www.entsoe.eu/regions/Pages/default.aspx

 

https://www.youtube.com/embed/0bm4hqINTyI

https://www.entsoe.eu/major-projects/ten-year-network-development-plan/Pages/map/index.html#4/50.25/12.01

 

https://www.entsoe.eu/data/statistics/Pages/default.aspx

 

https://www.entsoe.eu/data/statistics/Pages/monthly_hourly_load.aspx

Datum auswählen: Z. B.

24.05.2017 bis 31.05.2017

https://www.entsoe.eu/data/statistics/Pages/monthly_hourly_load.aspx

oder

17.01.2017 bis 24.01.2017

Alternativ:

https://www.entsoe.eu/data/statistics/Pages/monthly_hourly_load.aspx

ferner

https://www.entsoe.eu/data/statistics/Pages/monthly_hourly_load.aspx

oder hier

https://www.entsoe.eu/data/statistics/Pages/monthly_domestic_values.aspx

Die Parameter wieder eingeben nicht vergessen

https://www.entsoe.eu/data/statistics/Pages/monthly_domestic_values.aspx

Land oder auch Länder auswählen nicht vergessen.

https://consultations.entsoe.eu/

https://www.entsoe.eu/about-entso-e/inside-entso-e/Advisory%20Council/Pages/default.aspx

https://www.entsoe.eu/major-projects/ten-year-network-development-plan/Pages/map/index.html#4/50.25/12.01

oder hier

https://www.entsoe.eu/db-query/production/monthly-production-for-a-specific-country

und

https://www.entsoe.eu/db-query/consumption/mhlv-a-specific-country-for-a-specific-day

 

https://www.vde.com/de/fnn/themen/europaeische-network-codes#

https://www.vde.com/de/fnn/themen/europaeische-network-codes/erstellung-und-nationales-regelwerk

https://www.vde.com/de/fnn/themen/europaeische-network-codes/leistungsklassen

https://www.vde.com/de/fnn/themen/innovation

https://www.vde.com/de/fnn/themen/innovation/hinweis-speicher

https://www.vde.com/de/fnn/themen/vom-netz-zum-system

Mathias Dalheimer: Wie man einen Blackout verursacht…

https://www.youtube.com/watch?v=yaCiVvBD-xc

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

 

 

Das Orangebuch der Energiepiraten – meine Sicht – Teil 1

Alles was wir für die Zukunft der Energienutzung wissen müssen, wissen wir bereits. Und das wollten die Autoren des Orangebuchs der Piraten aufzeigen! Ich habe zu meiner Zeit als Mitglied der Piraten den Anstoß für das Buch gegeben und ein paar Gedanken beigetragen. Hier lege ich eine ein wenig überarbeitete Fassung vor. In echter Piratenmanier klaue ich die Vorlage, ergänze, kommentiere und verändere, wo es mir wichtig, richtig und passend erscheint.

Den noch bei den Piraten verbliebenen Autoren gebührt der allerhöchste Respekt für ihre unermüdliche Arbeit. Ich selbst konnte meine eigene politische Überzeugung, die mit dem ursprünglichen Kodex https://wiki.piratenpartei.de/Kodex der Piraten nahezu genau übereinstimmt, in der gelebten Realität der Partei seit 2013 immer weniger bis schließlich gar nicht mehr wiederfinden.

Ich kann mit vagen idealisierenden Begriffen ohne definitorische oder normgebende Eigenschaften wie „soziale Gerechtigkeit“ nichts anfangen. Am Arsch. Inhaltslose Seifenblasen. Politische Werte sind weder beliebig erweiterbar noch emotional. Sie sind viel mehr nahezu exakt feststellbare, nachprüfbare und im Alltagsleben entsprechend leicht konkretisierbare, eben normbildende Begriffe.

Wie Freiheit, Transparenz, Solidarität, Gleichheit und Arbeit. Nicht aber Gerechtigkeit oder Leistung.

Inhaltsverzeichnis Seite

Einleitung

1 Energiebereitstellung in Deutschland
1.2 Lagerung fossiler Energieträger
1.3 Energieverteilung
1.4 Struktur des Energiebedarfs, -einsatzes
1.4.1 Wärmebedarf, -einsatz und -speicherung
1.4.2 Strombedarf, -einsatz und -speicherung
1.4.3 Energiebedarf, -einsatz und Transportleistung im Verkehrsbereich

2 Energieeinsatz in einer nachhaltigen Gesellschaft
2.1 Energie neu denken
2.2 Mobilität ohne fossiles Mineralöl
2.3 Behaglich wohnen mit wenig Energie
2.4 Wirtschaft und Verwaltung werden sparen
2.5 Anteil am internationalen See- und Flugverkehr

3 Die Welt einer nachhaltigen Energiebereitstellung
3.1 Die Verteilung von Wärme und Strom in der Zukunft
3.2 Zusätzlicher Wärme und Strombedarf
3.2.1 Verluste der Wärmeleitung und -speicherung
3.2.2 Verluste der Stromleitung und -speicherung
3.3 Rohstoffverfügbarkeit für die Wärme- und Stromspeicherung

4 Die Bereitstellung der Energie von morgen

5 Der Weg

6 Globaler Ausblick

Literaturverzeichnis und Anmerkungen

Danksagung

Einleitung

Die Bürger unserer hoch technologisierten Industrienation werden seit vielen Jahren stetig und täglich mit Informationen bombardiert:

– fossile Brennstoffe wie Öl und Kohle sind endlich
– wir „verbrauchen zu viel Energie…“
– um jeden Preis muss Energie gespart werden

Die hauptsächliche Begründung lautet: Durch die Energiebereitstellung ausgelöste CO2- Emissionen müssen dringend reduziert werden, um dem Klimawandel entgegen zu wirken.

Diese These nährt, fördert und impliziert ungeeignete und unpassende Denkmodelle, pflanzt irreführende Paradigmen in zunehmend weniger intensiv und ausreichend geschulte Gehirne.

Diese Parameter verstellen den Blick auf die physikalischen Gegebenheiten.

Jüngstes Beispiel für so ein implantiertes Paradigma, Zitat Sigmar Gabriel: „ Wer glaubt man könnte die Erneuerbaren einfach weiter so ausbauen, der hat die Rechnung ohne die Physik gemacht. Dies geht nicht ohne den massiven Ausbau der Netze!“ Das ist das Verkaufsargument zu Gunsten enorm finanzkräftiger Investoren (Versicherungen, Fonds, Banken), die über ihre Beteiligungen den gepriesenen Ausbau einerseits ermöglichen, andererseits sich damit rentierliche Geschäftsmodelle über mehrere Jahrzehnte sichern.

Demgegenüber ist zwar längst klar und eindeutig bewiesen: Speicher können Transportnetze locker, effizienter und nachhaltiger ersetzen. Sie eignen sich aber weder für horizontale, oberflächliche, noch vertikale, tief integrierte Geschäftsmodelle in der großen Fläche, Breite und Masse. Sie sind für Großkonzerne mit aller höchst dotierten Posten für Vorstände (Könige, Prinzen) und Aufsichtsräte (Senatoren, geheime Staatsräte, Unternehmensberater, abgehalfterte Politiker) deshalb denkbar ungeeignet.

Energie ist im Überfluss vorhanden! Allein die Energie der Sonneneinstrahlung auf die Erde ist 16-fach so hoch wie der weltweite Energieverbrauch. Wir können auf der Erde zusätzlich den Wind, die Geothermie und andere „Erneuerbare Energien“ für den Energiebedarf unserer Gesellschaften nutzen.

Die gute Nachricht: Wenn wir nachhaltig wirtschaften (Effizienz vor monetärer Wirtschaftlichkeit), müssen wir uns nicht einmal einschränken.

Wir werden keinen Komfortverlust erleiden. Wir müssen nur umdenken und die heute bereits zur Verfügung stehenden technischen Verfahren zur Bereitstellung von Energie aus erneuerbaren Ressourcen nutzen. Unsere Versorgung kann zukünftig vollständig durch so genannte „Erneuerbare Energien“ sichergestellt werden. Soweit es geht, werden Rohstoffe genutzt, die weltweit ausreichend und erneuerbar vorhanden sind. Seltene Rohstoffe müssen dagegen kaum neu gefördert, sondern können in einem Kreislaufsystem genutzt werden. Mit diesen Maßnahmen können wir auf dem Weg zu einer nachhaltigen Energiebereitstellung den CO2-Verbrauch senken und auch unsere Lebensqualität nicht nur halten, sondern durch bessere Umweltqualität auch noch deutlich steigern!

Dieses Ziel ist sogar einfach zu erreichen. Den Weg zu gehen, ist notwendig für uns und die nächsten Generationen. Er löst viele Probleme und schafft viele neue zusätzliche Arbeitsplätze. Es ist der verantwortungsvollste Weg in die Zukunft der Energiebereitstellung!

Vorab empfiehlt es sich, über ein paar Aspekte nachzudenken, um das Thema Energie unter seinem tatsächlichen Blickwinkel zu betrachten. Können Sie diese Fragen beantworten?

– Energie und Leistung: Was ist der Unterschied?
– Besteht eine Verwandtschaft mit politischen Begriffen?
– Arbeit und Leistung! Was soll sich wieder lohnen? Leistung oder Arbeit?
– Was ist der Unterschied zwischen einer Wh (kWh, MWh, GWh) und einem W (KW, MW, GW)
– Was ist der Unterschied zwischen Wirkungsgrad und Effizienz?

Erinnern wir uns:
Am 1. April 2000 wurde durch die damalige Bundesregierung das „Gesetz für den Vorrang Erneuerbarer Energien“, das EEG, in Kraft gesetzt. Dieses Gesetz war fortschrittlich und führte zu einem schnellen Ausbau regenerativer Stromerzeugung. Das Thema Wärme war damals nicht im Fokus und ist auch heute noch unterrepräsentiert. Durch die nachfolgenden Regierungen wurde dieses Gesetz mehrfach angepasst und trägt heute den Titel „Gesetz für den Ausbau erneuerbarer Energien“. Das Ergebnis dieser Anpassungen war stets das Zurückfahren und Ausbremsen der Energiewende in der BRD.

Ausgerechnet, das politische Gebilde, das sich eine Energiewende auf die Fahnen geschrieben hat, ausgerechnet das „Land“, von dem der Rest der Welt seinerzeit sagte: „Wenn die es machen, dann ist es nicht ausgeschlossen, dass es funktioniert!“, ausgerechnet WIR haben zugelassen, dass unsere späteren Regierungen weiter zurückgerudert sind, als andere Fortschritte gemacht haben.

Deutschland ist nicht der Vorreiter und Leitmarkt in Sachen „regenerativer“ Energie. Wir sind nicht mal mehr Mittelmaß.

Unter Energiewende verstehen wir den vollständigen Ersatz fossiler, also endlicher Energieträger durch regenerative Energieträger.

https://de.wikipedia.org/wiki/Energiewende

Im Rahmen des EEG werden durch die ÜNB bestimmte Szenariorahmen entworfen. Diese Szenariorahmen sind die Grundlage für die weitere technische Umsetzung.
Ein Szenariorahmen behautet und versucht, den zukünftigen Strombedarf, die geographischen Verbrauchsschwerpunkte sowie den Spitzenlastbedarf zu prognostizieren. Dafür werden durch die ÜNB Daten zugrunde gelegt die an vielen entscheidenden Stellen nicht öffentlich zugänglich sind. Damit kann dieser Szenariorahmen faktisch nicht in Frage gestellt werden. Es mangelt fast vollständig an Transparenz.

http://data.netzausbau.de/2030/Szenariorahmen_2030_Entwurf.pdf

Wie aus der Quelle, Seite 22, zu entnehmen, ist eine vollständige Ablösung fossiler Primärenergieträger nicht erkennbar. Fakt ist, dass für „re-generative“ Stromerzeugung, die durch die Witterung bedingt nicht immer zur Verfügung steht, alternativ erzeugter Strom bereitgestellt werden muss. Wenn die fossilen Primärenergieträger aber 100%ig ersetzt werden sollen dann steht der genannte alternativ erzeugte Strom nur in Form gespeicherter Energie zur Verfügung. Dazu ist ein massiver Ausbau der Speicherkapazitäten notwendig. In den Szenarien werden zukünftige Speicherkapazitäten fatalerweise nicht in die Betrachtung einbezogen.
Wir sind heute als Gesellschaft vom Import vorwiegend fossiler Energieträger abhängig. Wir wissen hinreichend genau, dass fossile Energieträger endlich sind und wesentlich zur Veränderung unseres Klimas beitragen. Um unsere Energieversorgung dauerhaft zu sichern und unseren Lebensraum zu schützen, müssen wir unsere Energieversorgung vollständig auf regenerative Energie umstellen: Die gesamte Energieversorgung, nicht nur die Stromerzeugung. Das EEG war ein erster Schritt zur Umstellung auf EE. Für die Zukunft brauchen wir aber einen ganzheitlichen Ansatz der alle Energieformen einbezieht. Wir wollen im Folgenden zeigen, dass der vollständige Ersatz fossiler Energieträger möglich sein wird.

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt

Vorschlag zur Senkung von CO2-Emissionen im Strassenverkehr

Vorschlag zur Senkung von CO2-Emissionen im Strassenverkehr

Eine pragmatische Regelung unter Anwendung existierenden Rechts

Einleitung: Mittlerweile ist bekannt, dass die Bundesrepublik Deutschland entgegen aller Ankündigungen von Regierung und einigen Parteien die angestrebten Klimaziele verfehlen wird.

So bedauerlich das ist: Angesichts der aktuellen politischen Stimmung in der Bevölkerung steht kein Zeichen dafür, dass sich an der Zustimmungsverteilung für die einzelnen Parteien bis zur nächsten Bundestagswahl wesentliches Ändern wird.

Alle enthusiastischen Versuche Aufbruchsstimmung zu verbreiten fruchten nichts. Schon gar nicht, wenn sie von Parteien kommen, die nur noch von ihrer Substanz leben. Menschen schickt man ab einem gewissen Alter für gewöhnlich in Rente, und auch wenn die USA gerade antreten das Gegenteil zu beweisen, indem sie sich ein Kabinett aus rein fossiler Substanz angelacht haben:

Warum sollte das nicht auch für Parteien gelten, vor allem, wenn sie nichts mehr an sich selbst verändern können, als ein paar kosmetische Äußerlichkeiten.

Egal. Da gibt es ein paar Andere, die kennen ein oder zwei Patentrezepte für alles:

Gesetze verschärfen
Kontrolle verstärken

Besonders beliebt sind Blitz-Marathon-Veranstaltungen im Frühjahr. Hören diese Helden sich eigentlich noch selber zu?

Das Thema schärfere Gesetze und mehr Kontrolle hat schon John Locke mit irgendwelchen Autoritären vor über 300 Jahren diskutiert. Er war klar dagegen und hat die Auseinandersetzung intellektuell klar gewonnen.

Ich mache meinem Namen schon immer alle Ehre. Ich bin ein ungläubiger Thomas. Nicht aus Prinzip oder Trotz, sondern weil ich einfach so gestrickt bin, nichts zu glauben, sondern alles nachprüfen zu Wollen.

Deswegen sage ich es ganz offen:

Ich glaube nicht an den Klimawandel. Aber ich vertraue den Technikern, Wissenschaftlern und Klimatologen, die Meßergebnisse vorlegen und auf Basis bewertungsfreier Meßergebnisse den Fakt der Erwärmung demonstrieren können. Genau genommen traue ich Meßergebnissen und den Leuten, dass sie diese korrekt erfassen und dokumentieren.

Ich vertraue auch den Bildern aus Gletscherregionen, auf denen man klar und deutlich sieht, dass heute weniger Eis vorhanden ist als vor Jahrzehnten. Einige dieser Stellen habe ich selbst besucht.

Deshalb habe ich keinen Grund, weiter zu fragen, wie genau der Klimawandel im Detail funktioniert. Das konnte mir bisher kein einziger Fachmann so erklären, dass ich es schlüssig nachvollziehen konnte. Früher oder später kamen stets Phrasen, Behauptungen und Ideologie.

Als genauso Natur- wie geisteswissenschaftlich und sprachlich ausgebildeter Mensch habe ich mich aber auch nie daran gestört, dass ausgerechnet eine „exakte“ Wissenschaft, die alles berechnen kann, wie die Physik, ein Problem kennt, dass sie nicht lösen kann.

Niemand weiß, ob Schroedingers Katze lebt oder tot ist, bevor er die Kiste öffnet, in der die Katze sitzt. Außer mir natürlich. Ich weiß es, verrate es aber nicht. Niemals!

Also befasse ich mich lieber mit einem pragmatischen Vorschlag, statt nach Antworten zu suchen, die das eigentliche Problem nicht lösen.

Das Ziel heißt: Emissionen verringern.

Welche Schippe können wir also ohne großen Zinnober drauflegen?

Sehen wir uns zuerst die Grundlagen an. Strassenverkehr ist einfach. Menschen fahren mit Fahrzeugen von A nach B und transportieren dabei Gegebenheiten von A nach B: Waren, Tiere, Pflanzen, sich selbst, den Nachbarn oder was auch immer.

Das Versprechen, das unsere Regierung in unserem Namen abgegeben und vertraglich zugesichert hat, lautet irgendwie ungefähr: Wir werden die Emissionen bis 2020 um 20% senken.

Weil viele sich am Straßenverkehr beteiligen, gibt es Regeln. Ob die nun alle sinnvoll sind, sei dahingestellt. Ob sie jedem gefallen ebenfalls.

Wir wissen, dass diese Regeln nicht unbedingt gern eingehalten werden und deshalb das unsterbliche Motto seit Beginn der Aufzeichnungen menschlichen Verhaltens lautet: Kontrollieren und Bestrafen, zum Zweck der Erziehung. Wie ineffizient, aufwendig, unproduktiv und nutzlos das ist, wurde schon in John Lockes Toleranzbriefen ausführlich diskutiert, die jeder Law & Order-Gläubige und leidenschaftliche Gesetzesverfasser sich gelegentlich zu Gemüte führen sollte.

Sich auf Statistiken zu stützen, um eine Verbesserung des Verhaltens zu dokumentieren, ist unzulässig, wenn keine empirischen Beweise dafür erbracht werden können. Das bessere Verhalten korreliert ebenso mit erhöhtem Verkehrsaufkommen. Deswegen ist es kein Beweis für verbesserte Einsicht der Verkehrsteilnehmer.

Wie gesagt, wir haben schon Regeln. Einige davon zitiere ich aus der StVO:

§ 1 Grundregeln

Die Teilnahme am Straßenverkehr erfordert ständige Vorsicht und gegenseitige Rücksicht.
Wer am Verkehr teilnimmt hat sich so zu verhalten, dass kein Anderer geschädigt, gefährdet oder mehr, als nach den Umständen unvermeidbar, behindert oder belästigt wird.

§ 3 Geschwindigkeit

(1) Wer ein Fahrzeug führt, darf nur so schnell fahren, dass das Fahrzeug ständig beherrscht wird. Die
Geschwindigkeit ist insbesondere den Straßen-, Verkehrs-, Sicht- und Wetterverhältnissen sowie den
persönlichen Fähigkeiten und den Eigenschaften von Fahrzeug und Ladung anzupassen.

Es darf nur so schnell gefahren werden, dass innerhalb der übersehbaren Strecke gehalten werden kann.

§ 4 Abstand

(1) Der Abstand zu einem vorausfahrenden Fahrzeug muss in der Regel so groß sein, dass auch dann hinter
diesem gehalten werden kann, wenn es plötzlich gebremst wird.

These:

Ich behaupte, bereits diese Regeln genügen, um bei konsequenter Einhaltung die Emissionen um mehr als 30% zu senken.
An der einen oder anderen Stelle könnte man ohne großen Aufwand sinnvoll nachbessern.

Datenlage:

http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Aktuell/zaehl_aktuell_node.html;jsessionid=7CC2A53F2C370244348B7744935762B8.live11292

Ein wenig Mühe muss man sich schon machen. Aber man kann auf dieser Seite die gesamte Belastung auf allen Autobahnen nachschauen. PKW und Schwerlastverkehr werden getrennt ausgewiesen.

Der Eindruck, den man erhält ist erst mal subjektiv, da es nur 7 recht grobe Kategorien gibt, denen jeweils eine unterschiedliche Anzahl Zählpunkte zugewiesen ist.

Es ist nicht klar festzustellen, ob zuerst die Zählpunkte gezielt ausgewählt wurden, und wenn ja, nach welchen Kriterien oder ob einfach willkürlich gezählt wurde und einfach nur Ergebnisse präsentiert werden. Man erhält also nur ein qualitatives Bild: Es ist einen Menge los.
Zudem ist nicht auf den ersten Blick klar, wie viele Fahrspuren jeweils vorhanden sind. Gezählt werden jeweils beide Richtungen. Man muss also ebenfalls ziemlich grob annehmen, dass die Anzahl der Fahrbahnen in etwa mit dem Verkehrsaufkommen zunimmt.
Zusätzlich muss man achtgeben, ob Bundestrasse mit nur einem Fahrstreifen oder mit zweien oder Autobahn.

Orientiert man sich mittels des Menüs der Website genauer, wird deutlich:

Einspuriger Verkehr spielt sich in etwa zwischen 7.500 und 30.000 Fahrzeugen am Tag ab.

Zweispuriger Verkehr beginnt bei etwa 20.000 Kfz und hört bei 60.000 Kfz spätestens auf.

Dreispurig und mehr wird es dann meistens ab ca. 50.000 Kfz.
Die kleinsten und größten Kategorien lasse ich außen vor, weil es einfach sehr wenige sind, bzw. weil die Verkehrsverhältnisse dort zu stark von jeder Art Verkehrsfluss abweichen. Es nützt nichts, zu wissen wie viel Fahrzeuge täglich und nahezu durchgehend im Stau stehen oder nur langsam vorankommen. So wie es nichts nützt zu wissen, wie wenige Fahrzeuge auf nicht ausgebauten Bundestrassen mit Kreisverkehren und Ortsdurchfahrten nur langsam vorankommen.

Das bedeutet man erhält für die Masse im Schnitt in etwa Verkehrsaufkommen zwischen 250 und 650 Fahrzeugen pro Stunde auf den Fernstraßen.

Methode:

Nachdem ich jetzt eine grobe Vorstellung habe, in welchem Bereich ich mich befinde, möchte ich erwägen, was das real bedeutet.
Klar ist, dass sich der Verkehr nicht gleichmäßig über 24 Stunden verteilt, was durch die kurze Berechnung aber unterstellt ist.
Das fordert den einen oder anderen Gedanken, um sich klar zu machen, dass das reale Verkehrsaufkommen dann, wenn es darauf ankommt, viel höher ist.

Wenigstens 8 Stunden täglich tendieren zu höchstens einem Drittel des Durchschnittswerts, von den anderen 16 sind es ca. 6 Stunden Stoßzeit, der Rest dürfte das Mittel in etwa treffen.

Sinnvollerweise ist daher mit dem stündlichen Maximum zu rechnen. Gehen 8 Stunden lang beim Maximum von 650 Kfz gut 220 Stück ab, dann sind das ca. 1.700 Stück, die auf die sechs Stunden Stoßzeit verteilt werden müssen. Das sind gut 280 Stück pro Stunde und damit sind wir bei rund 900 Fahrzeugen pro Stunde, mit denen pro Spur zu rechnen ist. Das muss jede Strasse können. Egal ob Bundestrasse oder vierspurige Autobahn.

Zum Vergleich: Bei den schwach befahrenen Straßen mit 250 Stück Ausgangswert fallen bei Nacht ca. 1300 Stück weg, die sich auf die sechs Stunden Stoßzeit verteilen. Bedeutet auch dort ca. 110 Stück mehr, also wenigstens 360 Stück pro Stunde.

Das Sättigungsproblem:

Sättigungsproblem bedeutet, begrenzter Raum pro Kilometer Strasse.
An der Stelle will ich überlegen, wie viele Fahrzeuge eine Spur bei welcher Geschwindigkeit überhaupt so zulässt, dass der vorgeschriebene
Abstand eingehalten werden kann.

Dazu findet man im Netz typische Kapazitäten bei bestimmten Geschwindigkeiten.

Bei 1.500 Kfz pro Stunde sollen 100 km/h möglich sein.
Bei 2.000 Kfz pro Stunde sollen 90 km/h möglich sein.
Bei 2.500 Kfz pro Stunde sollen 80 km/h möglich sein.

Das sind Schätzungen und angebliche Erfahrungswerte, keine Berechnungen. Es bedeutet im Umkehrschluss für ausgebaute Bundestrassen und Autobahnen: Die Verkehrsdichte bestimmt die Höchstgeschwindigkeit und eben nicht die individuellen Eigenschaften der Fahrzeuge.

Der Abstand:

Wie sieht es daher mit den Abständen aus?

Was bedeuten 2.500 Kfz pro Stunde auf einer ausgebauten Spur?
Wir beobachten als Gedankenexperiment einen Abschnitt von 100 Metern eine Stunde lang und zählen im Kopf mit.
Wenn alle 80 km/h schnell fahren würden, so bräuchten sie für die 100 Meter ca. 22 Sekunden oder umgekehrt reicht jede Sekunde für 4,5 Meter.

Eine Stunde hat 3.600 Sekunden. Wir sollten jetzt also 42 Fahrzeuge pro Minute beobachten. Oder jede Sekunde 0,7 Fahrzeuge.
Hier ergibt sich ein guter Moment, das Regelwerk für Straßenverkehr zu befragen. Wir haben hier die drei oberen Kategorien Grundregel, Geschwindigkeit und Abstand zur Verfügung. Die Kategorie Abstand gibt vor, stets so viel Abstand zu halten, dass man in jedem Fall vermeiden kann, aufzufahren.

Hält man sich an die Regel, Abstand gleich halber Tacho, kann man sich nur darauf verlassen, dem Vorausfahrenden nicht aufzufahren.

Stehende Hindernisse muss man mindestens deutlich vorher sehen, um eine Kollision zu vermeiden.

Der reguläre Bremsweg bei Tempo 80 km/h liegt bei 64 Metern, der Anhalteweg sogar bei 88 Metern.

Bei Tempo 100 hätten wir 100 Meter bzw. 130 Meter.

Das bedeutet, bei Dunkelheit, wenn die Sicht gegen unbeleuchtete Hindernisse für alle, also auch ältere oder nachts schlechter sehende Personen keine hundert Meter weit reicht, sind Geschwindigkeiten über 80 km/h in jedem Fall regelwidrig und bedeuten ein deutlich erhöhtes Risiko. Direkte Sicht auf Hindernisse auch mit Kurvenlicht reicht sowieso kaum 80 Meter weit.
Allein das ist ein Grund, die Geschwindigkeiten bei Dunkelheit ganz allgemein auf 80 km/h auf Autobahnen zu begrenzen. Selbst wenn keine schlechten Wetterverhältnisse vorliegen. Bei Bundestrassen sogar auf 70 km/h. Im Grunde haben wir jede Menge Anlass zur Dankbarkeit, dass bislang nicht viel mehr passiert.

Zurück zum Gedankenexperiment:

Betrachten wir nun den vorgeschriebenen Abstand nach Faustregel halber Tacho, wären das 40 Meter. Plus eine unterstellte Fahrzeuglänge von 5 Metern ergibt das 45 Meter. Oder gut zwei Fahrzeuge auf 100 Meter, für die jedes 22 Sekunden braucht. Eine Verkehrsdichte, die man auf der Autobahnleicht selbst wahrnehmen kann.

Immer dran denken: Ein Leitpfosten – das sind die mit den Reflektoren – alle 25 Meter.

Stehen uns pro Sekunde gerade mal 4,5 Meter Raum zur Verfügung, dann sind wir mit Abstand halber Tacho bei 2.500 Pkw pro Stunde und Tempo 80 km/h bereits vollkommen ausgereizt und am Limit. Da darf kein LKW dabei sein, es darf nicht regnen und es darf keine Irritationen oder gar echte Störungen geben.

Betrachten wir Brems- und Anhalteweg bei 80 km/h haben wir mit 64 und 88 Metern bei 2.500 Kfz pro Stunde und erlaubten 80 km/h bereits deutlich zu wenig Platz.

Erst die Kombination 1.500 Fahrzeuge pro Stunde bei 80 km/h reicht dann aus, da wir dann in etwa den Platz haben den wir brauchen.
Allerdings nach wie vor ohne LKW-Verkehr. Und dass, wenn wir uns mit der für LKW vorgeschriebenen Geschwindigkeit bewegen.
Mit den ermittelten 900 Pkw mit denen in Stoßzeiten pro Stunde zu rechnen ist, haben wir zwar noch ein paar Reserven, aber nur rechnerisch. Denn die tatsächlichen Spitzen kennen wir nicht. Wohl aber deren tägliches Ergebnis: Stau.
Der wiederum hat seine Ursache schlicht dort, wo zu viele Fahrzeuge gleichzeitig an derselben Stelle ankommen. Jeder, der regelmäßig Autobahnen nutzt, kennt den Welleneffekt, der regelmäßig bei hohem Verkehrsaufkommen auftritt.
Der wiederum hat mit der wellenartigen Fortpflanzung von Brems- oder Stillstandsereignissen zu tun, gegen die es ein einfaches Mittel gibt:
Eine konstante Geschwindigkeit. Aber nicht nur für bestimmte kürzere Abschnitte, sondern generell. Tempobegrenzungen ausschließlich an Gefahrstellen oder wegen Lärmvermeidung reichen längst nicht mehr aus.

Welches ist die ideale Geschwindigkeit?

Nun, wie ich hoffentlich gezeigt habe, hängt das von der Verkehrsdichte ab. Bereits mittleres Verkehrsaufkommen lässt jedes Tempo oberhalb 80 km/h auf Autobahnen bei der heutigen Verkehrsdichte klar und deutlich unvernünftig werden.

Der Zeitbedarf ist ziemlich genau gleich.

Zudem dürfen die meisten LKW und viele Busse auch nur 80 km/h fahren.

Ergänzend soll sich mal jeder seinen Schnitt ausrechnen den er jeden Tag erreicht und es einfachmal Ausprobieren: Mit maximal 80 km/h die Routinestrecke eine Weile lang fahren.

Dazu kann man sich auch folgende Fragen stellen:

Ist Strassenverkehr ein Wettbewerb?

Welchen Nutzen hat man davon, schneller zu fahren, nur um früher im Stau zu stehen?

 

Was hat die ganze Predigt nun mit den Emissionen zu tun?

Es ist mir hoffentlich gelungen deutlich zu machen, dass unsere Verkehrsdichten, die zugelassenen Höchstgeschwindigkeiten und die Kapazitäten tatsächlich ausgereizt sind. Die tägliche Wahrnehmung weiterhinauf die Unfähigkeit der anderen Verkehrsteilnehmer zurückzuführen ist auch keine Lösung. Selbst dann nicht, wenn es bei der Mehrheit zutrifft.
Es dürfte auch klar geworden sein, warum selbst bei mittlerer Belastung höhere Geschwindigkeiten keinen Nutzen ergeben.
Aus all dem ergibt sich, dass jeder weitere Ausbau von Fernstraßen auf mehr Spuren keine Zeitersparnis bringen wird. Es bringt lediglich die Möglichkeit für einige wenige, weiterhin deutlich schneller zu fahren als für alle zusammen sinnvoll und nützlich ist.
Wir leben nicht mehr in den 80ern, als viel weniger Verkehrsteilnehmer auf Recht viele neue Autobahnen getroffen sind.
Inzwischen sind andere Gegebenheiten wichtig.

Betrachten wir daher die

Energieeffizienz:

Zunächst ist klar zu stellen. Energieeffizienz ist das Verhältnis von genutzter Energie zu eingesetzter Energie oder was das gleiche ist: Das Verhältnis von genutzter Arbeit zu eingesetzter Arbeit.
Es geht also nicht um die Bereitstellung von PS oder KW, wir reden nicht über irgendeine theoretische Leistung unter bestimmten, bekannten und definierten Bedingungen sondern um kWh.

Wie sieht der Zusammenhang aus?

Die Energie (W wie Work gleich Arbeit) ist gleich der halben Masse mal dem Quadrat der Geschwindigkeit.

W = ½ * m * v2

Was hier fehlt sind die beiden Widerstände, die anliegen. Der Rollwiderstand (Faktor: 1+cr) des Reifens und der Luftwiderstand (Faktor: 1+cw) des Fahrzeugs.

Der Rollwiderstand wird mit der Masse wirksam der Luftwiderstand mit der Geschwindigkeit.
Steht das Fahrzeug, liegen beide Widerstände bei 1, die Widerstandwerte sind technische Angaben für Reifen bzw. Karosserie und werden addiert. Beispiele sind 0,015 für einen durchschnittlichen Rollwiderstand und 0,04 für einen durchschnittlichen Luftwiderstand.

Die Formel lautet genau betrachtet also

W = ½ * m * (1+0,015) * (v*[1+0,04])2

Warum der Aufstand, warum der Zirkus?

Nun, aus physikalischen Formeln kann man viel herauslesen, ohne viel zu rechnen.

Was sagt uns diese:

Auf den ersten Blick schaut jeder auf die Masse m.

Da denkt man sofort an zum Beispiel 2.000 Kilo, bei der Geschwindigkeit höchstens an 200 km/h.
Deshalb wollen Elektroautobauer auch immer möglichst leicht bauen. Zumindest deutsche. Sie vergessen aber immer, dass der Luftwiderstand im Quadrat in die Rechnung eingeht, die Masse aber nur zur Hälfte und zudem bei Elektroautos ca. die Hälfte der vorher zum beschleunigen aufgewendeten Energie wieder zurückgewonnen wird. Mit zunehmend höherer Geschwindigkeit fällt dieser Vorteil aber weg.
Vergleicht man jetzt ein und dasselbe Fahrzeug bei unterschiedlichen Geschwindigkeiten, dann kann man alles unberücksichtigt lassen, außer der Geschwindigkeit. Es genügt, die unterschiedlichen Geschwindigkeiten inklusive des Luftwiderstands zu rechnerisch zu vergleichen, um ein Gefühl für den Effekt zu bekommen. Physik für Nicht-Mathematiker sozusagen.

Vergleichen wir also Tempo 70 km/h, Tempo 80 km/h, Tempo 100 km/h und Tempo 130 km/h inklusive des CW-Werts.

Wir müssen sie nicht mal in Meter / Sekunde umrechnen. Tempo 70 soll 100% sein,
≡ bedeutet „Entspricht“:

100 % ≡ ( 70*[1+0,04])2 = 5299,85
131 % ≡ ( 80*[1+0,04])2 = 6922,24
165 % ≡ ( 90*[1+0,04])2 = 8760,96
204 % ≡ (100*[1+0,04])2 = 10816,00
345 % ≡ (130*[1+0,04])2 = 18.279,04

Schockiert? Bei Tempo 130 ist der Energieaufwand 245% höher als bei Tempo 70?
Zugegeben. Das Beispiel ist ein wenig drastisch gestaltet. Erstens entspricht ein CW-Wert von 0,04 einem echten VW-Bus, einem Käfer, einem alten Polo oder einem guten LKW und zweitens fährt kaum eines dieser Gefährte dauerhaft 130 km/h.
Zudem sind moderne Pkw-Motoren leistungsmäßig auf höhere Geschwindigkeiten ausgelegt. Deswegen spart man bei niedrigerem Tempo aber immer noch sehr viel Treibstoff. Nur fällt der Mehrverbrauch bei höherem Tempo nicht so auf, schlicht weil man als Fahrer niemals merkt, dass der Motor sich anstrengen muss und deshalb auch nie wirklich auf das effektive Tempo achtet.
Dennoch wird deutlich, dass das Einsparpotential an Energie/Arbeit umgekehrt, wenn man statt 100 km/h 80 km/h fährt mit ca. 30% enorm ist. Da die Emissionen aber direkt von Treibstoffverbrauch abhängen, gilt das auch für diese.
Allein das sollte ein Grund sein, folgenden Vorschlag zu erwägen:

Vorschlag:

Wir begrenzen an 01.01.2018 die Geschwindigkeit auf Autobahnen, Kraftfahrtstrassen und mehrspurigen Bundestrassen auf maximal 80 km/h.
Auf allen einfachen Bundesstraßen 70 km/h und auf allen anderen Landstraßen gleichermaßen.
Als bundesweiten Feldversuch befristet auf 3 Jahre.
Bereits nach einem Jahr wird mit der Evaluation begonnen, werden die Autofahrer befragt und wird ermittelt, wie viel Treibstoff, und damit Emissionen gespart wurden, was sich wie bei den Staus verändert hat und wie groß der Steuerausfall bei der Mineralölsteuer ist. Gleichzeitig werden die Emissionen gemessen und die Ergebnisse laufend im Netz veröffentlicht.
Der Vorschlag stellt eine entscheidend andere Vorgehensweise dar, als weiter um Sinn und Nutzen von Tempolimits zu streiten und gar nichts zu tun.

Der Nachweis ist evident und schlüssig. Der Vorteil liegt auf der Hand. Für jeden nachvollziehbar. Die Bürger sollen selbst die konkrete Erfahrung machen und anschließend
Um das komplementär zu forcieren, zeigt das Beispiel auch, welchen fatalen Effekt erhöhte Geschwindigkeiten bei Nutzfahrzeugen haben. Der gewählte CW-Wert stößt uns mit der Nase darauf.

Hier noch mal zur Erinnerung:

100 % ≡ ( 70*[1+0,04])2 = 5299,85
131 % ≡ ( 80*[1+0,04])2 = 6922,24
165 % ≡ ( 90*[1+0,04])2 = 8760,96

Das sind jetzt die Werte in einem Tempobereich, den LKW nutzen.
Wer auf Autobahnen darauf achtet, wird feststellen:
Wenn man Tempo 80 km/h fährt, wird man von LKW überholt. Hält man mit den LKW mit, dann geht die Reise mit ca. 92 km/h plus minus 3 dahin.
LKW fahren schneller als erlaubt, trotz Tempobegrenzern.
Das bedeutet, würden sich die LKW an die vorgeschriebene Geschwindigkeit halten, so würden sie ca. 30% Treibstoff sparen.
Gleiches gilt für Hunderte und Tausende von Kleintransportern, die geradezu Kilometer fressen und ständig am Limit fahren.

Deshalb

Vorschlag 2:

In alle Neufahrzeuge – PKW, LKW, Transporter, Motoräder – werden elektronische Tempobegrenzer eingebaut, die über Vergleich der Standortdaten per GPS / Galileo und Daten der Navigationssysteme die vorgeschrieben Geschwindigkeit ermitteln und die Motorleistung entsprechend begrenzen. Gebrauchte Nutzfahrzeuge bis 5 Jahre werden zur Nachrüstung verpflichtet.
Damit ist mehr als eine Emissionsreduktion sichergestellt. Und niemand ist eine seinem Recht als „Frei fahrender Bürger“ beschränkt, da das allgemeine Tempolimit nur ein Feldversuch ist, der in der Größe aber notwendig ist, um einigermaßen verwertbare Daten in Fläche und Summe zu erhalten.

Das physikalische Extra:

Zudem ergibt sich bei physikalischer Betrachtung der auftretenden Kräfte ein weiterer Effekt.
Kraft ist Masse (m) mal Beschleunigung (a). Beschleunigung wird benötigt um ein Fahrzeug eben zu beschleunigen oder abzubremsen. Dann spricht man von negativer Beschleunigung, was aber am Auftreten von Kraft nichts ändert.
Treten Kräfte auf, so entwickeln sich sofort Gegenkräfte. Beim Kfz bedeutet das, die Beschleunigung eines Fahrzeugs äußert sich in einer Kraft, die das Fahrzeug beschleunigt und einer Gegenkraft, die über die Reifen auf die Straßenbelag wirkt. Diese Kraft setzt sich aus zwei Teilkräften zusammen: Einmal Reibung des Reifens gegen den Belag, vor allem im Randbereich des Reifens, und einmal Sog des Reifens am Belag, da das Gewicht des Fahrzeugs den Reifen auf den Belag drückt und die Rollbewegung den reifen an einem Teil der Fläche wie eine WC-Saugglocke (Pömpel) anhebt. Dabei bildet sich ein Unterdruck an vielen kleinen Teilflächen, der eben den Sog auf den Belag bewirkt. Verstärkt tritt der Effekt beim Bremsen auf, da sich dadurch der Anpressdruck des Reifens verstärkt. Den Effekt sieht man oberflächlich an den asphaltstücken, die oft aus dem Belag gerissen werden.

Die Kraft (F) verhält sich zur Energie in einem umgekehrt exponentiellen Verhältnis.

F = m * a

Die Beschleunigung aber ist die Geschwindigkeit pro Zeit:

a = v/t

also Lautet die Beziehung:

F = m * v/t

wenn nur die Energie / Arbeit

W = ½ * m * v2

war, dann ist

v = √W/2m

und für die Kraft:

F = m * (√W/2m)/t

Hier sieht man sehr schön die umgekehrte Exponentialität.

Die Bedeutung ist, dass die notwendige Kraft mit der abzubauenden Geschwindigkeit abnimmt. Das aber nicht gleichmäßig, sondern zunehmend stärker.
Dreht man die Sicht um, bedeutet das: Je höher die Geschwindigkeit, desto höher die Anfangs zum Bremsen benötigte Kraft. Und das nicht gleichmäßig, sondern im Quadrat. Genau wie bei der Energie.
Wenn nun also ein LKW statt 80 km/h 90 km/h fährt, dann schadet er nicht nur dem Nutzer des Fahrzeugs durch 30% mehr Spritverbauch, sondern gleichzeitig durch die höhere Sogwirkung am Reifen über die daraus ebenfalls 30% höhere wirkende Kraft dem Steuerzahler und verstärkt dies auch nicht entsprechen beim Bremsen. Selbst wenn er vorausschauend fährt, nützt das nichts, weil die auftretende Kraft am Straßenbelag dann zwar geringer ist, dafür aber umso länger wirken muss.
Das erhöht die Baukosten, weil stärkere Bauweise geplant werden muss und erst recht die Instandhaltung.
Wir tun uns damit keinen Gefallen. Nicht einen.
Wenn das alles zusammen nicht ausreicht, um wenigstens den umfassenden Feldversuch zu starten, dann kann ich nicht mehr helfen.
Zu guter Letzt:

Vorschlag 3:

Energiebedarfskennzeichnung und Energieausweis für Fahrzeuge.
So wie ein Gebäude heute seine Energieeffizienz nachweisen muss, sollte das ein Fahrzeug auch tun müssen. Beim Verkauf, ob Neu oder gebraucht, sowie in allen Testberichten ist der Energiebedarf in kWh nach Norm anzugeben.
Ein 5-Liter-Diesel, der nach Norm eben 5 Liter Diesel auf 100 Kilometer verbrennt, setzt also 49,05 kWh auf 100 km ein.
Ein 7-Liter-Benziner, der nach Norm eben 7 Liter Benzin auf 100 Kilometer verbrennt, setzt also 64,47 kWh auf 100 Kilometer ein.
Ein Erdgasfahrzeug, das nach Norm 2,9 Kg Erdgas auf 100 Kilometer verbrennt, setzt also 34,7 kWh ein.
Und das kann ich Euch unmöglich verheimlichen, mein NISSAN LEAF, der laut ADAC Test 17,5 kWh auf 100 km brauchen soll, hat bisher nie mehr als 15 kWh auf 100 gezogen.

Noch Fragen?

Thomas Blechschmidt
Postfach 0255
86802 Buchloe
„Ceterum censeo Bavariam restituendam!“

Fragen, Wünsche, Informationen?

Nehmen Sie einfach Kontakt zu mir auf!

Meinen und Glauben sind meine Sache nicht. Ich will alles selbst nachprüfen können.

Ich erstelle Expertisen, berate, erstelle Konzepte für Kommunen, Unternehmen, Privatleute und beantworte Fragen.

Auch spezifische, technische, politische.

Frei von jeder Verkaufsabsicht. Wer meine Arbeit gut findet, kann gern spenden und meine Arbeit unterstützen.

Ich arbeite soweit als möglich auf Basis von Fakten, logischen Deduktionen, evidenzbasierten Zusammenhängen.

https://www.paypal.me/ThomasBlechschmidt